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ON THE GREATEST PRIME FACTOR Of ax™ 4 by"
BY

K. MAHLER

(Manchester)

A theorem by G. Poérya (Math. Z. 1, 1918, 143—148) and C. L.
SteGEL (Math. Z. 10, 1921, 173—213) states that if f(x) is a polyno-
mial with integral coefficients and at least two different zeros, then
the greatest prime factor of /(v) tends to infinity as the integer x
increases indefinitely.

I proved (Math. Ann. 107, 1933, 691—730) the following more
general result: ,,.Let I'(x, y) be a binary form with integral coef-
ficients which has at least three (real or complex) linear factors no
two of which are proportional. Let the integers x and y be relatively
prime. Then, as max (J«~ |, |y |) tends to infinity, so does the
greatest prime factor of I'(x,y)”.

Little is known about the greatest prime factors of the values of
non-homogeneous polynomials in two variables. It has then perhaps
some interest to study special polynomials. In this note, the follow-
ing result will be established.

Theorem: Let m > 2 n=>=23, a+#0, and b 40, be four
integers, and let x and v be {wo inlegral vaviables which are relatively
prime. Then, as max (| x|, | v |) increases indefinitely, the greatest
prime factor of ax™ - by" lends to infinity.

The proof of this theorem is obtained essentially by generalizing
that of Theorem 6951) in E. Laxpau, Vorlesungen iiber Zahlen-
theorie 3, 61-—64. However, it becomes necessary to make use not
of the Thue-Siegel theorem, but of its p-adic generalization. In the

1) ,,Es sei » > 3 ganz rational; a, b, ¢, d ganz rational, a # 0, 0* — 4ac £ O,
d # 0. Dann hat die Diophantische Gleichung

ay? + by + ¢ = dx"
nur endlich viele Losungen’.

N. Archief voor Wiskunde 8



114

proof of the theorem the condition (x, y) == 1 will be replaced by the
weaker one that (x, v) is bounded, and it will finally be shown that
even less is required.

1. The proof is indirect ; we assume the theorem is false and derive
a contradiction. -

Denote by P}, P,, ... P,an arbitrary finite set of primes, and by
IT the set of all positive or negative integers of the form

1 ple Dft
e PhPh ... Pl

where e is -+ 1 or — 1 while /;, /,, ..., /, are arbitrary non-negative
mntegers. We assume from now on:

. Lhere exists an infinite sequence S of different pairs of integers
x, v with the jollowing properties:

(x,v) is bounded. (1)

The integer ax™ 4 by" is either zevo or contained in 11.” (2)

The theorem will be proved if it can be shown that these as-
sumptions lead to a contradiction.

2. Since (x, v) isbounded and since max (| x|, |y |) tends to infinity
as x, y run over S, there are in S only finitely many pairs x, v for
which v = 0. For the same reasons, there are also at most finitely
many pairs x, v in S satisfying ax™ -~ by* == 0. For this equation

xm b
requires that - = — —; but then (x, y) cannot be bounded unless
,V/L a

both » and v are bounded.
We may therefore assume, without loss of generality, that the
following further condition is satisfied:

v # 0 and ax™ -+ by £ 0 when x, v s in S. (3)
3. The conditions (2) and (3) imply that for every pair x, y in S,
axm + byn — P Pl ... Pl

where ¢ = 7 1 and where f,, f,, ..., [, arc non-negative integers.
On dividing by m, these integers take the form

fr=gom + Dy, fo=gom —+ hy, oo, fr=gon + hy;
here gy, &, ..., ¢ are non-negative integers, and 7y, Ay, ..., /1, are
integers satisfying the inequalities

0<hy<m O hy<m, ..., 0< Iy <m.



Therefore, for all the pairs in S, the system of # 4 1 numbers

e, by, hyy oo, Ry

has not more than 2m! possibilities. Since S may be replaced by any
infinite subsequence, there is no loss of generality in assuming that

(
e=2¢% Ny =N, hy="hS, ..., hy=h}

assume fixed values for all pairs in S.
Put, for shortness,

0 0 0 5
¢ = OPUOPLL | PR PUPR L Py

By what has just been proved, ¢ is a constant integer different from
zero, and z is a variable element of Il. Furthermore, x, v, and z are
connected by the relation

ax™ - byn = cz™, (4)

4. Put

’ ’

ax = x', am =¥, anlc = ¢,

so that (4) takes the form,

x'm -+ b’y?l — 0’2111.

Evidently (x', v) = (ax, v) is a factor of (a, v) (x, v) and therefore,
by (1), 1s bounded. The new coefficients & and ¢’ are constant in-
tegers different from zero. When x, v run over the pairs in S, the
corresponding triplets of integers x’, v, » formanew infinite sequence,
the sequenze S’ say.

For simplicity, we drop now again the accents in &', ¢/, &', and S’.
The results obtained so far may then be expressed as follows.

There are two [ixed integers b and ¢, bolh different from zero, and an
infinite sequence S of triplets of integers x, y, z, with the following
properties:

ALl pairs of integers x, v are distinct, and therefore (5)

Iimmax ([x |, |v]) = co.

(%, y) 1s bounded. (6)

xm A4 by" = czm, (7)

Both y and z are diffevent from zero, and z belongs to T1. (8)
It i1s also true that

(x, 2) is bounded. 9)

For, by (7), (v, z)™ is a divisor of by, and it trivially is a factor of
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bx™. Hence, with ¢ = max(m, n), (x, )™ divides b(x, v)?, a number
which is bounded.

5. To the last properties of the triplets in S one can add the fur-
ther one that
lim | 2| = oo. (10)

For let this relation be false, i.e. let there exist infinitely many
triplets x, ¥, 2 in S for which z is bounded. Since S may, if neces-
sary, be replaced by a suitable infinite subsequence, it is permitted
to assume that cz™ retains a constant value, ¢, say; evidently
¢y = 0. The Diophantine equation

xm ,_l__ byn = ¢, (1 1)
has thus infinitely many solutions in integers x, v. By a well-known
theorem of C. L. S1EGEL (Abh. preuss. Akad. Wiss. 1929, No. 1),
the curve (11) must then be rational. However, one easily shows
that the curve is of genus

o —1) (1 —2) + (m — d),

where d == (m, ). This genus is positive because m = 2, n = 3,
and m > d; hence a contradiction is obtained.

6. Since the integer ¢ does not vanish, the m values of its m-th

root, the numbers
Yo Voo Vi

say, are different algebraic integers. Let K be the algebraic field
obtained by adjoining these 7 numbers to the rational field. The
ideals occurring in the next sections are all ideals in /{, and they are
integral ideals unless the contrary is said. We exclude the zero ideal.

In K, the equation (7) can be factorized in the form,

(% — yp2) = — by". (12)

h=1
We shall replace this equation by m separate equations.
7. We introduce the ideals
Dok = (X — 732, ¥ — .9) (hyk=1,2,...,m; h k).
Evidently
Opr | (yn —yi)x and Dy, | (o — vi)2

and therefore
bhk I (VIL - Vk) (x: Z)-
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On the right-hand side, the factor vy, — y, does not vanish, and
(x, z) is by (9) a bounded integer. Hence b, is of bounded norm and
has only finitely many possibilities.

Hence, after possibly replacing S by a suitable infinite subse-
quence, we are allowed to assume that all ideals b,, remain constant
when x, y, 2z run over the triplets in S.

8. Each of the m principal ideals (v — y,2) admits of a factor-
ization into ideal factors,

(¢ — ) = a2 (b= 1,2, ... m),

where a;, has no divisor which is the n-th power of a prime ideal. On
the other hand, by the definition of b,

(@nxy, k) = Do (e = k),
whence
(an, i) | Dy if b £ k.
We assert that each ideal a, has only finitely many possibilities.
If this assertion is false, then the norms of the prime ideal factors
of at least one ideal a; are unbounded when x, v, 7 run over the tri-
plets in S. Hence a; is infinitely often divisible by some prime ideal
p (not necessarily always the same) which does not divide the fixed
ideal
K
(b) I by,
h=1
1]
Therefore p is a factor of a;, but not of the other ideals a;, where
v # 7; moreover «; cannot be divisible by p~.
Let now p* be the exact power of p which divides
" e

I (v — ) = I (a,1)).

h=1 k=1
Then s is not a multiple of . On the other hand,

e

M — ) = ()

=1
1s divisible by an exact power of p the exponent of which evidently
is a multiple of # because p is not a factor of (b). Thercfore a contra-
diction arises, and the assertion about the ideals g, was in fact true.

It follows then that, after possibly replacing S by a suitable

infinite subsequence, all w ideals a,, a,, ..., a, remain constant
when %, v, z run over the triplets in S.
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9. If H is the class number of K, we can select H ideals
by, by, .., by,
in K so that, when 3 is an arbitrary ideal, just one of the products
0,3, 0.3, ..., by5

is principal. We denote by ¢, == ¢,(x,) that ideal 6, for which the
product ¢,x, is a principal ideal; therefore each of

C1’ CZ’ sy O

has only finitely many possibilities when «, y, =z run over the triplets
in S. On replacing again S by an infinite subsequence, it may be
assumed that these m ideals remain constant.

Since ¢,x, is an integral principal ideal, there exist m integers

&L & il &
in K such that
Caly = (&) (h==1,2,...,m);
the fractional ideals

e, " = (¥ —yu2) (6kn) ™ = (¥ — y2) (&)

are therefore likewise principal, and they do not depend on the
triplet x, v, z. Hence there exist m constant fractional numbers
Ay, Asy o o., A, in K such that

4" = () (h=1,2,...,m).
By v #0,
m
I (&) = (b))
h=1
and therefore
An # 0 and &, 4 0.

10. It follows that there exist m units #,, 7., ..., n, in K for
which
X

i = &y (=12 ..., m).
By Dirichlet’s theorem on the units in an algebraic field, each unit
7, can be written in the form

Ny = &0} (h==1,2, ..., m),

where ¢, and 0, are again units, and where each ¢, has only finitely
many possibilities.
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Put now
%, = ephy, and &, = 0,§, (h=12...,m),
so that
X — vz = 1,05 (h=1,2,...,m).
Then x,, %, . . ., #,, are fractional elements of K, each one with only
finitely many possible values; on the other hand, &y, &y, ..., {,, are

integers in K that depend on the triplet x, v, z. Again
Zn # 0 and ‘:h 7% 0.

On replacing S by a suitable infinite subsequence, we may assume
that s, #,, ..., %, remain constant for all triplets in S.

In order to get rid of the fractions, choose a positive rational
integer » such that

O = Uy, Oy == UKy, +.., Oy = Uky,

are integers in K; u, 0;, 04, ..., 6, are independent of the triplet
x, v, 2. The single equation (7) changes then finally into the system
of m equations,

w(x — yuz) == 0,y (h=1,2...,m). (13)

11. By hypothesis m = 2. There are thus always at least two
cquations (13), viz. those which belong to 4 = 1 and to 7 = 2. On
forming their difference, we obtain the equation

-n
0167

— 0yl = ulys — y1)%. (14)
By what has been proved, this equation possesses infinitely many so-
lutions z, &;, &, of the following kind. The variable z is a rational
integer contained in II, and | z | tends to infinity when x, y, z run
over the triplets in S. The two other variables {; and {, are integers
in K ; furthermore, their greatest common divisor (£, ,) is a bounded
ideal because the ideal

(0,87, 0503) == udy,
is constant.
Two pairs of integers a;, a, and f, f, in K are said to be associ-
ated if there exists a unit ¢ such that

fr= o, Py = s,

and they are otherwise called non-associated. It can easily be shown
that at most finitely many pairs £,, £, belonging to solutions z, (j,
£, of (14) can be associated. For assume that there exists one fixed
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pair of integers 7, 7, in K and an infinite sequence of units e, also
in K, such that

Cp == €Ty, Gy == €Ty

corresponding to an infinite sequence of solutions z, &y, &, of (14).
Then
u(yy — 1)z = &"(0,7] — 0p73)

and so the rational integer z is of bounded norm, contrary to the
limit relation |z | — co.

12. We have thus proved that there exists an infinile sequence of
non-associated pairs of integers &y, &y in K Jor which the form

F(Gy, &) = o0t — ol

is divisible exclusively by a fixed finite set of prime ideals, viz. only by
those prime ideals that are divisors of the numbers

wu, Vo — v, Py Po oo, Po

This is, however, impossible. For by the p-adic generalization of
the Thue-Siegel theorem (see C. J. ParRrY, Acta math. 83, 1950,
1100, in particular Theorem 2 and its Corollaries), the following
theorem holds:

Let K be a field of finite degree over the vational field and of dis-
criminant D. Let further F (Cy, Co) be a binary form in § and C, of
degree not less than 3, with non-vanishing discriminant, and with
integral coefficients in K. Then, for every given [inite set B of prime
ideals in K, there exist at most finitely many non-associated pairs of
integers Cy, Co in K such that, (i) the norm of the greatest common
divisor of &, and Cy does not exceed | \/D |, and (i) I (L, &y) 1s di-
visible only by prime ideals in 5.

In the present case, the binary form

F(Cy, Gy) = 0,87 — 0205

is of the required kind. For its degree n is at least 3, and by o0, 5 0
its discriminant does not vanish. On the other hand, it has no? been
proved that the norm of (£, {,) is not greater than | 4/D |, but only
that this norm is bounded. However, this difficulty can easily be
surmounted.

13. For this purpose, put (Z;, {;) == g; then g is of bounded norm
and therefore belongs to a finite set of ideals. By a well-known
theorem in the theory of algebraic fields (see E. Hrcke, Theorie
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der algebraischen Zahlen, Leipzig 1923, Satz 96), the ideal class of
g contains an integral ideal f of norm not greater than | 4/D |. This
ideal has naturally only finitely many possibilities; the same is there-

fore true for the fractional ideal ? This fractional ideal is principal

and of the form

where 7 -+ 0 is a fractional number in K which also hasonly finitely
many possible values. From the definition of y, the two numbers

7o 1 A
Zy =y and Z, = 17,

are integers in K, and f is their greatest common divisor.
The equation (14) implies now that
0 LY — 0y LY = uly, — i)y "
Since the expression on the left-hand side is an integer in K, the
same is true for that on the right-hand side, and it is also obvious
that the expression on the right-hand side admits only prime divisors

of bounded norm. The theorem in 12. can now be applied because
the norm of (Z,, Z,) = f does not exceed | v/D |, giving the assertion.

14. In the proof of our theorem we had replaced the original
condition (x,v) = 1 by the weaker one that (x, v) is bounded. A
natural and final condition can now be given without difficulty.

Theorem: Let S be an infinite sequence of different pairs of
inlegers x, v for which the greatest prime [actoy of ax™ -+ by is bound-
ed. Then the greatest prime factor of (x™, y") is bounded, and so are the
three quotients

xm y n axm e by/z

v ey e v

Proof: Put (x7, y*) = d so that ¢ is a divisor of ax™ -+ by"; the
prime factors of ¢ are therefore bounded. Let Py, P,, ..., P, be all
the different primes that are admissible as factors of ¢, and then
denote by II, as in 1., the set of all integers different from zero
that have P°, P,, ..., P, as their only prime factors. Thus, in
particular, ¢ belongs to If. By a construction similar to that in 3.,
o can be shown to be of the form

(j = @y mn
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where ¢ is one of a finite set of integers not zero, and where y is
contained in II. Since p™" is a divisor of ¢ and 0 is a divisor of both
xm and y", the two quotients

x v
9= and w = "~
w" wm
are integral. Further
0
am et —— . —
(t) ’ Le ) ,,pmn (}

is bounded, hence also (v, w). Finally, in
axm + bV" — ’(/)m"((l'l)m + b&ﬂ/ﬂ)y

the left-hand side has by hypothesis only bounded prime factors;
the same must therefore be true for av™ - bw".

We have thus derived from the sequence S of pairs x, v a new
sequence T of pairs of integers v, w such that, (i) (v, ) is bounded,
and (ii) the greatest prime factor of av™ +- bw" is likewise bounded.
Hence, by the theorem already proved, the sequence 7' cannot
contain more than finitely many distinct pairs o, w. It follows then
that v and w are bounded, and the assertion is now obvious from
the equations

xm gm yn wn o oax™m Jr b}’” aym™ +, b

P R L N N e ) ¢

I conclude this note with a remark about the special case when
m — 2 and n = 3. One can then give a rather shorter proof, using
either my theorem on rational points on curves of genus 1 (Journ.
reine u. angew. Math. 170, 1934, 168—178), or Parry’s theorem in
the special case of cubic forms. Conversely, the p-adic form of the
Thue-Siegel theorem for cubic forms can be deduced from a slight
generalization of our theorem on ax? - by3, viz. to the case when
both coefficients and variables are integers in an algebraic field
of finite degree over the rational field.

(Received 23.2.1953)



