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On a Problem in Diophantine Approximations

By Kurr Marver in Manchester

Frequent use is made in the theory of Diophantine approximations of the
following result which goes back to DrricHLET?):

Theorem 1: Let Ly (%), . . ., L, () be m linear forms vn n variables , Z,, . . ., Zy;
assume that m < n, and that the coefficients of these forms are real numbers of absolute
value not greater than the positwve integer a. Then, for every positive integer N, there
exist integral values not all zero of xy, %a, . - ., %, Such that

L) | S 5 for w=1,2,...,m, and |2,| < 2 (@N)'™" jor v =1,2,...,n.
m
In this theorem, the variable factor (aN)"~™ occurring in the upper bound for

| z,| cannot be replaced by any lower power of aN, as can be proved by consi-
"

dering special forms. On the other hand, the factor 27"~™ independent of & and
N is not best-possible, and the problem arises of replacing this factor by the smallest
possible functions of m and n. Unfortunately, this problem seems to be extremely
hard, even when m and n are small.

In the present note I treat only the case m = 1 of a single linear form L(z) in n
variables and determine an improved constant which, however, is still not the best.
Instead of using the DrricrLET ““Schubfach-Prinzip”, T apply the much more powerful
theorem of MiNgOWSKI on convex bodies and so obtain the following result:

Theorem 2: Let L(x) be a linear form wn n variables @y, Zy, . . ., %,; assume that
n =29, and that the coefficients of {his form are real mumbers of absolute value mot
greater than the real number o = 1. Denote by v, the volume of the (n—1)-dimensional

convex polyhedron
o |1 (2| <Lz =L adnt o+ o =1

Then, for every real number N = 1, there exist inlegers @y, &, . . ., &, 10t all zero such
that

[ L(z) | < '"11\7 , max (| 2 |, |x2 Lo e, ) <2 (‘vii)n——i‘

1y See, e.g.; C. L. SrecrL, Transcendental Numbers (Princeton 1949), 36-—36: A. O. Ger'ronp,
Transcendental and Algebraic Numbers (In Russian), (Moscow 1952), 18—19.
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T}nq theorem is stronger than the case m=1 of Theorem 1 because '

?’h

%

1 = 2 forn=2 a,nd Ve~ ]//2_“_2,‘ as 77{”‘? .

nd ,11; 1s nearly best—posmble when n=2.

There is ewdenﬂy no loss of generahty if the pammeter ain Theorem 218
qual to 1: this assumptlon is therefore made throughout thlq note

For n> 2 let al, Oosso ,an 1 be n~1 nonanegatlve number

[ac2]<1 %lxn]!< ]0’1-771‘5““2»”2‘{“ +an1%w1‘<i

'r denote

by e(o) = (al, Oy o iyl 1) the volume of this body The pro
fol ng lemma. ,

ammete)s wl, rzz. . ; o an_

er ore now n=

3 Ewdentlv t(a) isa svmmemc function of the a’s. It thUS sufﬁces to prove the

othh respeot to the parameter Ay y .

e traneformatmn

nges K (a) into

W —alx” yz—“zwzy faey Ypoo 1—a;z~1xn~1

the new polvhedron K'(a) = K (ay, az, 1) glven bv

17/1'<an y2}<%w“‘ 19%«11\/‘“7;—-% lys kot . s 1[<1

and, say, of volume v @) = Va0, ,an__l)s where evidently

v (a'l'!

sectlon

1y1i<azv o a‘?/n—"[san :‘?.z Yn— 1“" I?/l‘f‘yz

, ’(a), and by w

and that :therefore

) =a, a - Lapoyela).

 The assermon is thus equwalent to the mequaht} ,

!H‘“’n-»‘z; an 1) v,(an ««‘;aqz~2sfd;z;1)' .

il

“n~1 ~ -

Te prove thlb assertlon denote by t a real parameter, ‘by x(t) the (n ——9) dlmensmnal pol;yhedr

Y 1; <"1 ’

() the (n —«9)-dlmensmna,l volume of »( t) Sinee K (a)is svmmetneal in the orlgx .

s obvxous ﬁhat w(f”) is an even function of ¢, i.e. that

w(—i) = w(t)r

.
fp—1

. v(ae oy 1)—2 f w(t)dt

o
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Now, if'¢ and 7 are arbitrary.real numbers and if 0 = @ < 1, then by the BrunN-MINKOWSK]
theorem on the’sections of a ‘comfe'x‘body 2,
1 i 1
w(@t+(1-@)r)”'2 > Ow(t)r—? + (1—60) w(r)"~2.
On xubstltutmg T=c =tand'® = 1/2, we find thus'that
oBy < w(0): forallt.
Also; for 7 = 0, the Bronn-MiNKOWSK! inequality gives
o1 A L o1
G (ON"2 = Pw(t) 2 F 1—6) w02 ZwHr 2,
and 0, on replacmg Ot by 7, we obtain the inequality
Y= (R ) R B - A
Assume now that 0 < ayq = oy Then, in particular,
o) = wla,=1) for 0Lt = ansy,
o) wlopi) o dor apySt<an g

Hence, by the first mean value theorem of integral calculus,

LI v“;v.—l
f oty dt = a,— 10Uy / o) dt < (a1 —a, ) w@p=1);

0 [ | . .
and-therefore . g

=1 Gp=1 : al 1»._‘; . a1 tp=1 :
/ w)dt < / w(t)dt<1+ ”‘a "‘»): i f w(t)dt,

g 5 =1 =14
whenqe the assertion,
- Corollary: If Oéalﬁ 1,..., 0= a, <1, then
(@, oy ooy @) =0(1, 1001 =0,
2 It is obvious that v; = 2. More generally, the following result holds.

Lemma 2: v, = v, ;, and therefore v, _; =2 for n =2, 3, 4,...
~ Proof: Letn = 2. "By definition, v, is"the volume ‘of the n-dimensional polyhedron K, (.‘ife-’
fined by o
lm] =1 ol =1, 00 e[ S || S 1 2t a+ cfa| S 1
Thle polyhedron K, contains as a subset the polyhedron K,* given by the additional condmon
. ]1‘1—1me+ ity = 1 3
Denote bv 2% the volume of K,*; the assertion will be proved if it can be shown tha’c vt = v,, 1
This may be done as follows. : :
To every point X, == (%, %y + i\ Ty Ty) - Of Kn* “gorresponds - its .projection
Xy1= (2, @y -+ @a—q) 0 Ky y. Assume now, say, that :

0\x1+1'2+ B i

2) See BONNESEN-FENGHEL, Konvexe Kdrper (Berhn 1934), 178,874,
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~ The n-th coordinate z,; 0f X, is:then restricted solely by the two inequ&lities
k | TSy, = 1 (g we i py) Ay L
; and s0 may-certainly assume all.values for which

' ! 1<z, 0.

- ,, Similarly 2, may runover the whole illtef\*al

. 0<az, <1 e

It follows then that the volume of K,* is not less than that of a prism.of hexght 1 over: Kn._l
- its basis, and s0 v,* = 1 v, 1, whence the assertion.

3 It is not difficult to find explicit formulae forv, ., if useis made of Dirr¢uiET'S
discontinuous integral

<O

. dx
sin z cos Az — .
z 0
~ In this way, one first obtains the identity
2n sinaz\"
/l}n——l = e % dz 3
0

and from this derives, secondly, that

e 2 {nizj"‘ -‘l '11——‘

=}

Therefore, in particular,

16 116 o 88 .. BB87

151::2, 172:3, 1)3=*3—, U4:T§~’ ’U5=—‘-5**, ‘5“—“-]-.“8‘6“, etc.

Thlrdly, if in the mtegral for v,_; a new variable = a*]/n 18 mtroduced then the
integral changes into -

fa]

. g sint/Vn
el “m’ﬁﬂ {Vn ) 4,
J A

and here, uniformly in every finite mterval for i,

Lim (52 [Vn\" _ ot
oo \ 7} ;’1/97 !

It: is therefore not difficult to prove that

an 146 L : , .
7}n~1Nwa8 "t = ~%2”‘ asn-—>00,

7 }/ﬁ
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There is no need for gwmg detauled proofs of these statements which serve only
a8 an interpretation of Theorem 2.

. 4 We procede now to the proof of Theorem 2. ,

- By the hypothesm the linear form L( x) i$ of the form

- (m)_alfc1+a2x2+ cta,z,

. ‘where the coeffmlents a1 Oy, o are rea} numbers such that
max(lall las |, . D<1

' ':The aim is to show that there exlqt mtegers X ke such that

1

. fL(m)[—N, O<max(]m1“~xzj |2, D < ( ml)nﬂ._ |
. There is clearly no loss of generality i in assummg, (i) that all coefflclents a, are non-‘,

. negatwe and (u)
i max (ag, g, ... @,) = 1.

. ,:Moreover we may demand that this maximum is attained bv a,, 50 that

; j 0<a=1, O0=a=l..., 0=¢.,=1 a=1

, We dlstmgmsh now two cases. As a flrst case, assume that at least one of the’
~Vfi'coeff1ments Qqs Qs ooy My b0 greater than 1“7\7“’ let, say, .

' N
‘Then the assertlon is satistied by the choice
o ’ -1‘1—~1 $2~$3_M~,i*xilI:O,xn:_;_l_)
_ because . ; .
]L(»T)[“,]u _1|<N, O\max([xll Izl e, ’)’_1<3(ﬂ 1>n-’1’~;;ﬁ_,

'for N=1, and it is obvious that v, , < 2" ', ‘
. As a second case, assume that no coefficlent al, Ooy ooty “n»1 is grea,,dterk,than*,ﬁf

- ',b=~ﬁwg» @_12 n—D,

: S0 that the new numbers bl, Doy ..., b, ; are 'nOn-negatlve and
. , ; max (b17 bos. b =1 '
_ VS e mus't show that ‘the regmn R, 111 n-dlmensmnal space defmed b} the mequahtles

l(l"”—“)(b x1+b Ty A . +bn 13"n 1)+x
. 1

1 ,
Nﬁ,

mgating =
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containg at least one point (2, s ..., %,) Wwith integral coordinates not all zero.
This region is a convex polyhedron symmetrical in the origin; hence, by MINKOWSKI'S
theorem on convex bodies, it certainly contains such a lattice point if its volume
is not less than 2" This condition is in fact satisfied, as shall now be proved

“For shortness, denote by K,.; the (n—1)-dimensional reglon
1

,"51 Tneq I lb x1+b &y + +bn— Lp—i I) ( i’\l«_‘)n_l,

X
27 v
Ui

max (|
which, in the notation of section 1, is of volume

v (bh bzo Wiwaty b __1) e

Here, by Lemma 1,

P(bgs by ey byiy) 2= Uiy

and so the volume of K, is not less than on-1 N
~Consider now a point (2, @y, . . ., &,) such that its projection (2, Zp, ..., ©,_1)

lies in K,_, while the n-th coordinate , satisties the inequality

-1

SN;~

i(l-—*}“) (Z?1 Ty +bz Ty Fian »{—bn_l x“‘_l),_}_ x,

| hence z, may describe an interval of length 2/N. Then

; ' 1
] xn“] = (1 s ';T) I bl Ly + b2 &y o N bm—-l Ly g I + N

o
9 (-f‘—-v)“" >1..

Vpel

Tt follows that (z,, 2,, . . ., ,) lies in B, hence that the volume of B, is not less than

%_ f 211—-1 2\7 e 2n .

whence the assertion.

5. In the lowest case n=2 Theorem 2 gives a result which may be expressed

as Tollows:

Let —1 <o <1and N=1. Then there e:mist integers , y not both zero such that
1a.r+y]_N, max(|z, |y =N. :
~ Archiv der Mathematik. VI 15
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