ON COMPOUND CONVEX BODIES (1)
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THE compounds of a matrix (see e.g. (1), chapter 5) play an important role
in several branches of mathematics, e.g. in algebraic geometry. The present
paper discusses applications of such matrices to the theory of convex bodies
and to the geometry of numbers.

For a given dimension n and order p of the compound, it is shown how
to associate with every symmetric convex body K in E, a second symmetric

convex body K in R, where N = (n) is in general greater than n. The
P

bodies K and K are connected by many interesting properties. Thus their
volumes satisfy the inequality
0 < ¢, < VIKV(K) P < e,

where P — (n— !

p—1
it is deduced that the successive minima m,, m,,..., m, of K, and the suc-
cessive minima gy, fo,..., py of K, both for the lattices of all points with
integral coordinates, have the property that

0 < eq My < pg < My (K=1,2,.,N).

Here ¢, depends likewise only on » and p, and M,, M,,..., M, are all the
products of p distinct factors m, arranged according to increasing size.
This second result is used to show a general transfer principle connecting
systems of linear inequalities with their compound systems.

), and where ¢, and ¢, depend only on n and p. From this

1. Let 1 < p < n—1, and let
X(-rr) - (xfrb x7r25"'7x77n) (77 = l> 27'“7 p)

be p points in n-dimensional Euclidean space R,. There are

(]
P

distinet sets of p integers vy, vy,..., v, satisfying
I <y <wy <o <<y, K1
associate with each such set the determinant

i .
[ Xy, Ty - - . Wy, |
|
. Ty Wy, L Xy,
Yvveawvp T ; .
L Xpyy g, - - o Tpy,

Finally arrange these determinants in an arbitrary order (e.g. lexico-
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graphically) and denote them in this order by &, &,,..., §y. There corre-
sponds then to the set of points XM, X® . X® in R, the point
B = (&, & &), = [XO, X XP] say,
in N-dimensional Euclidean space R.
If, in particular, X®, X® .. X® are linearly independent, the pxn
matrix

T T2 Lin
Tor Loz Tan
x’pl xpz xpn
is of exact rank p, and so at least one of the minors x, , , is not zero.

Hence E is in this case different from the origin O of R,. On the other
hand E = O if the given points in R, are linearly dependent, e.g. if two
of them coincide.

It is well known (see e.g. (3), chapter 5) that if 2 < p < n—2, the
determinants x, ,, , cannot assume values independent of one another,
but satisfy a certain set of homogeneous quadratic equations; e.g. in the
lowest non-trivial case when n = 4, p = 2 there is just one such condition,

and, on changing the sign of one of the determinants, it can be written as

f1§4+fzf5+§3§6 = 0.
In other words, for all choices of XM X@ . X® in R, the derived point
E = [X®,X® ., X®]is restricted to a certain algebraic manifold (n, p)
in R, in the form of a cone of centre O, the Grassmann manifold, and this
manifold coincides with the whole space only when either p = 1 or
p =n—1.

2. Let now KO, K® ... K® be any p bounded closed convex bodies in R,
To simplify the discussion, and because this suftices for the later application,
we shall impose the further condition that each body K™ contains the origin O
of the coordinate system as an inner point and is, moreover, symmetric in this
point. Tt is not demanded that the p bodies KO, K® ...  K® are all distinct,
and in fact these bodies will later on be made to coincide.

Denote now by S — (KO, K@) K®)
the set of all points B = [X®, X® .. X®] where, for 7 = 1, 2,..., p, X
runs independently over all points of K. From this definition it is at once

obvious that X is a bounded closed point set which lies entirely on the
manifold §(n, p). In general, X naturally need not be a convex set.

Deno‘ce then by K = [KD, KO, ... K®]

the convex hull of X, i.e. the smallest closed convex set that contains X.
We call K the compound of KO, K@ . . K®.
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Since the origin O of R, belongs to all sets K™, the compound K similarly
contains the origin O of Ry. Moreover, K is symmetrical in O since KO is
symmetrical in O and

[— X0, X@_ X0)] = —[X0, XO,__ X®)].
We can further show that O is an inner point of K, and hence that the com-
pound is a convex body. For, by the hypothesis, O is an inner point of each

body K™. Hence a positive number § can be chosen such that the closed
sphere |X'| < & is a subset of each of KO, K®, . K®, Then the points

P = (3,0,0,...,0), B, = (0,8,0,...,0), .., P, = (0,0,0,..,8)

on the coordinate axes and their images in O are elements of all bodies K™,
and therefore the derived points

:{:[Pvl,Pvz, , P, J where 1 < Sy <y <. <y, <n
belong to X. But these derived points are exactly all the points on the
coordinate axes in R, of distance 87 from the origin, and their convex hull

1s the generalized octahedron T consisting of all points Z for which

€11+ éfz.”}"-n“r";g\" = or.
Evidently T contains O as an inner point and is itself contained in K,
whence the assertion.
We note that the compound K = [K®), K®,..., K®] obviously does not
depend on the order of K®, K® .. K® and that, in fact, this is the case
even when only a single one of these bodies is symmetrical in the origin.

3. Let X — X’ = QX or in explicit form
n
Ly, — Ay :kzl Wyp Ly, (h=1,2,. o),

be a non-singular affine transformation of R, into itself. Thus the deter-
minant, w say, of the transformation matrix Q = (w,,) does not vanish.
Such a transformation Q changes every bounded, closed, symmetric, con-
vex body K in R, into a body K’ = QK of the same kind. If the letter V
is used to denote the volume of a body, clearly

V(K" = V(QK) = |w|V(K).

The transformation Q of R, generates in R a likewise affine transforma-
tion, the pth compound Q® of Q. This compound is defined as follows.
Let X®, X® . X® be any p points in R, and let

E= (& & &y) = [XW, X XD)]
be the corresponding point in £,. Onapplying Q simultaneously to all X,
a second point

B = (£, & £y) = [QXD, QXD QX®)]
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in Ry is obtained which may be denoted symbolically by
H = QW E,

Here Q)?) again represents an affine transformation of the space R, into
itself. The matrix

QW = (w)) (H, K=1,2,..,N)
of this transformation has as its elements the N2 minors of order p of the
original matrix € = (w,,;), both indices H and K being arranged in the
same order as in § 1 when defining the order of the coordinates of . It is
shown in determinant theory that the determinant of Q®, o® say, is
given by

w? = P where P = n—l .
. p—1

Hence the compound transformation Q® is likewise non-singular.

The transformation Z - E" = Q®E changes ¥ and K into new sets
Y = QW ¥ and K = Q® K which may be expressed explicitly in the form
I = (QKD, QK® . QK®) and K = [QK® QK® . QK®).
This is obvious in the case of X', and is for K’ due to the fact that every
affine transformation changes the convex hull of a set into the convex hull

of the transformed set.
By the value of the determinant of Q®, it is again clear that the volumes
of the compound bodies K and K’ = Q® K are connected by the formula

V(K') = V(QPK) = w2 V(K).

4. In this and the next sections we shall only be concerned with the
special case when the convex bodies KW, K®, .., K® defining
K= [KDV, K®? . KV
areidentical: K® = K® = .. = K® — K say. Wethen write K = [K|®),
and similarly K" = Q@K = [QK|®. The correspondence K — K = [K|®
gives now a mapping of the set of all closed, bounded, symmetric, convex
bodies in R, into the set of all analogous bodies in R,.
We begin with some remarks on spheres and ellipsoids. Let
G, X <1
be the unit sphere in R, and let
Iy =[G, »
be its compound in £,. In general, T'® is not a sphere; it has, however,
interesting symmetry properties and may deserve a detailed study on its
own account.
Next let £ be any bounded closed ellipsoid in R, with centre at O, and
let E = [ E|? be its pth compound. By the theory of such ellipsoids there
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exists an affine transformation X — QX of R, into itself, of determinant
w # 0, such that £ = QG ; hence
V(E) = |oV(G,)-
Further also E = Q@I and therefore
VE) ol V),

where again P = <ni;) The product
p_

VEYW(E) L = V()Y (E,) " =0
is therefore independent of the special ellipsoid £ and a function only of
n and p.

5. We can now prove the first main result.

THEOREM 1. There exist two positive constants ¢y and c, with ¢; << ¢y and
depending only on n and p, with the following property.

If K is any closed bounded symmetric convex body in R,,, and if K = [K|®)
18 its p-th compound in Ry, then

¢y < V(KYW(K)F << ¢y, where P = (Zwi)

Proof. Let E be the ellipsoid with centre at O which is circumscribed to
K and of smallest volume. A theorem due to John (4) states that there
exists a second ellipsoid n—* ¥ obtained from & by the similarity transfor-
mation X — n~*X which is inscribed in K. Thus

nith < K ¢ K,

hence Vin=tH) = n=V(H) < V(K) < V(H). (1)
Let now K = [K|® and E = [ E]|? be the compounds of A and £. Then
also [n-tE|®) = n-ir E,

because the pth compound of the affine transformation X - n—*X is given

by E — (n—1)? B, as follows at once from the definition of Q@®. Further
V(n=t? E) = (n=?)N V(E) = (n—")" V(E).

Next, it is evident from the definition that K; <K, implies that also

[K P < [K,|®. Therefore
“E < K < E

n
whence V(n=tPE) = (n=4)F V(E) << V(K) < V(E). (2)
On combining now (1) and (2), it follows that
(=5 VEW(E)T < VIOV () < () VEV (B) .
Here, by the last section,
VeV ()" = VIP)V(&,)-F
is a number depending only on » and p, and so the assertion holds with
the constants
¢, = n P V(DPHYV(G,)F  and ¢, = ntnP V(T'PHV(G,) L.



ON COMPOUND CONVEX BODIES 363

It would be of interest to find the best possible values for ¢, and ¢,, and
to decide for which bodies these bounds are attained.

In the second part of this paper, I deal with the question of how far
Theorem 1 can be extended to general compounds [ KD, K@, ..., K®].

6. For the applications to the geometry of numbers it is useful to deter-
mine the distance function of a compound body.

It is well known that every closed, bounded, symmetric, convex body K
in R, has a distance function #(X) such that K consists exactly of all points
X for which F(X) < 1. Here a distance function is a real-valued function

F(X) = F(x,,%s,...,x,) of X in R, with the following properties.
(a) F(X)>0 itX =£0;, F(O)=0,

(b) F(tX) = [t|F(X) for realt,

() FX+4Y) < F(X)+F(Y).

Similar distance functions, but with E as the variable, naturally exist for
the convex bodies in Ry.

Let now again K@, K@ .. K® be p bounded, closed, symmetric, convex
bodies in R,, and let K = [K®, K@ . K®]| be their compound in REy.
Further denote by F™(X), for = = 1, 2,..., p, the distance function of K™,
and by ®(E) the distance function of K. Our problem is to express O(E)
in terms of FO(X), FO(X),..., FP(X). We shall solve this problem in the
next sections.

7. Every point E in Ry can be written in many ways as a finite sum

E— 3 [X0,XP,., XP], (1)

p=1
where the X;,”) are suitable points in R, and » can be arbitrary. For the
unit points on the coordinate axes in Ry certainly admit such a representa-
tion, even as a sum of one single term. The same is therefore true for all
points on these axes and so, by vector addition, for all points Z in Ry.
Denote, as usual, by |X| the length of X = (2, 2,,...,%,),
X = + (@t +ad+ ),
and similarly by [E]| the length of E = (£, &,,...,€y),

| = (@B E
Every coordinate of the point
(X0, X, ., XP)]

is a minor of the corresponding p X n matrix. There exists then a positive
constant ¢, depending only on n and p such that

[[XD, XD, XP]| < e XP[ XD | XP).



264 K. MAHLER

Hence the representation (1) of E implies that

7,
Bl <6 3 IXPIXD]. X 2)

Thus, if E 5= O, then not all points X;,’” can be too near to the origin.

8. We define now a function W(E) as the lower bound
W(E) = inf 3 FOXP)FO(XP).. . FO(XP) (1)
p=1
extended over all finite decompositions
= 3 [XD, X, X 2
XXX X @)

of E, F™(X) having the same meaning as in § 6.

The function Y'(Z) is properly defined in this way because E always
admits at least one decomposition. Tt is obvious that W/(E) is always
non-negative, and that 1'(0) = 0 since

0 =1[0,0...0].

We next show that V'(E) > 0 if E -4 0. By a classical property of convex
distance functions, a positive constant y; can be chosen such that

Fo(X) = 9, X] forall X (m =1, 2,..., p). (3)

[x}

By the last section, the decomposition (2) of E implies that
e r - -
Bl <o 3 IXPIIXPL X
p=
while, by (3),

< Al e 3 . > N ) . ) ‘
pleu)(X;l))ﬁ<2>(A/(32)),.‘F<m()g;)m);y{ Pg Au) X<2> iX}f’".

It follows therefore that always
Y(E) = y,]8], where v, = /¢, (4)

whence the assertion.
Furthermore, if Z admits any decomposition (2), then ¢ Z has the derived
decomposition

{5 - z (X0, X@,... X)),
and vice versa; hence Yt &) = tW(E) (5)
since FO@XV) = [t FO(XD).

Finally, W (:) satisfies the triangle inequality

P(E+H) <WV(E)+Y(H). (6)
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For let e > 0 be arbitrarily small; then two decompositions
7 S
B = pgl [XP,XP,.., XP] and H= Ugl (YO, ¥@, .. Y]
of E and H can be chosen such that
¥ (E) zr: FOXWV) FO(XP)—Le
p=
and W(H) > z FOYWD)  Fo(YP)—1
Since now
r S
E4+H= 21 [X0, X3 X EI[YE,“, Y@, Ye,
p= o=

we find that V(E+H) < {(V(E)+Le}-H{V(H) 4 Le},
whence the assertion when e tends to zero.

The formulae (4), (5), and (6), together with ¥/(0) = 0, mean that ‘F'(E)
is a convex distance function.

9. It will now be proved that W(E) is in fact the distance function of
K= [KD,K®, .., K®] ie. that ¥(Z) = ®(Z). This proof consists of two
parts; for it has to be shown that, if Z is any point of K, then W'(E) < 1,
and that the converse of this statement is also true.

(i) Let E be an arbitrary point of K. Since K is the convex hull of the
set ¥, there exist (see (2), p. 9) » = N+ 1pointsof X, thepoints £, =,,..., Z,
say, such that E is an inner or boundary point of the simplex with vertices
at the points E,. Thus E can be written as

r
PZl =
where t,, t,,..., t, are real numbers such that

.
=0, L,=0, ., £,=0, >t =

By the definition of E, each point Z, can be expressed in the form

B, = [X, X, X7 (p=1,2,...,7),
where X;l) e Kb, XPeK® .., X;,p) e Ko
and therefore
FO(X(V) < 1, FOX®) <1, .., FOXP) <1
Put now X;,l) =t, XV, so that FO(XV) < ¢,
T

Then Z (X0, X, LX)

. & ) Y " ; .
and p‘§1 F(U(X/(Jh)lf<~)()&;32))...14(1’>(X§}’)) < pzl t, =1,
whence W(Z) < 1 by the definition of this function.
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(it) To prove also the converse, assume first that the point = satisfies
the stronger inequality W(E) << 1, and choose a positive number e such
that also W(E)+e << 1. Further select a decomposition
r
B — T Y Y@
B = le[XP XD, XD
of E for which
7 —_ — —
2 FOXD)FOXP).. . FO(XP) < W(E)+e < 1.
p=1
There is no loss of generality in assuming that none of the points Xf,”) lies
at the origin. The numbers
T;)ﬂ) = F(")(X;")) (m=1,2,...,p, p=12,...,7)
are thus all positive, and each point X{™ is of the form
XM = #m XM where F™(X(™) = 1.
Put now t, = T;,l) Tﬁ,z)...v';)p) (p=12,.,71),

so that ¢, is likewise positive. Then

,
== 3 (XX, X (1)

and here pz=:1 t,= Y FOXD)FOXD). FO(XP) < 1.

p=1
Further XVe KO, XPeK® .., XPeK®,

and therefore [ X(V, X®,..., X[P'] € X. Since also O € X, it follows then from
(1) that E belongs to the convex hull of %, i.e. to K.

This proof assumed that W(Z) < 1. But K is a closed set, and ¥ (Z) is
a distance function, hence is continuous. Therefore the less strong assump-
tion that W(E) < 1 still implies that E belongs to K. This concludes the
proof.

From now on we use the notation ®(Z) for the distance function of K.
It is implicit in the last proof that ®(E) may also be defined by

Ni+1 -
®(E) = min PZI FO(XWD)FO(XED)... FO(XP),
where the minimum is now extended only over decompositions
2§t (1) x(2 ()
B = Pgl [XV, XP,.., X

of Z into r = N-}1 terms. By means of Weierstrass’s theorem one shows
easily that the minimum is attained. But as we make no use of this result,
the proof may be omitted.
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10. The results so far obtained will be applied to the geometry of num-
bers. We begin by defining compound lattices.

Let L be any n-dimensional lattice in R,, say of basis Z,, Zy,..., Z,, and
of determinant d{L) = {{Z,, Zy,..., Z,}|. Here the symbol {Z,, Z,,..., Z,,}
denotes the determinant of the n base points. The general point of L is
then of the form X = w, Z,+uy Zy+...+u, Z, where u,, uy,..., %, run
over all integers.

Assume X, X® . X® describe separately all the points of L. The
compound points E = [X®, X@ ., X®]form a certain point set II situated
on the Grassmann manifold (n, p) in Ry which, in general, is not itself a
lattice. However, a unique N-dimensional lattice A in Ry may be derived
from II as the set consisting of all finite sums

E= Y E,
1

T
[1]

where the points E, run separately over the elements of II. We call A the
pth compound of L.

We must show that the compound so defined is in fact a lattice, and
begin with a special case. Let L, be the lattice of all points in E, with
integral coordinates; this lattice has the basis

Zy = (1,0,...,0), Zy=(0,1,...,0), ... Z,=(0,0,.,1)

and the determinant d(L,) = 1. It is obvious that its compound lattice,
A, say, contains only points with integral coordinates. In fact, A, is
identical with the lattice of all points in R, with integral coordinates.
For the N compound points [Z,,, Z,,,..., Z, |, where

I <vy <wy <o <y, <M,
form exactly all the N distinct unit points on the coordinate axes in R,
i.e. the points with one coordinate equal to 1 and the others equal to 0.
Also the negative unit points can be written in a similar form as compounds
of the Z’s. The assertion is thus a consequence of the obvious fact that
every point with integral coordinates may be expressed as a sum of finitely
many positive and negative unit points.

It is now easy to show that also in the general case the compound set A
is a lattice. There exists to the given lattice L in R, an affine transforma-
tion X — X’ = QX such that L = QLg; let w be its determinant. Then
d(L) = |w|d(L,) and therefore

w = +d(L).
Now Q generates in R, the compound affine transformation

E - E = QWE
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of determinant w® = w? = +d(L)*. This transformation Q® evidently

changes the special compound lattice A, corresponding to L, into the

compound A corresponding to L. But then A is likewise a lattice because

the image of every lattice under any non-singular affine transformation is

again a lattice. Further d(A) = |o®|d(A,), and so A has the determinant
d(A) = d(L)F.

The construction of the pth compound just given associates with every
lattice L in R, a unique lattice A in R,. We note that, on the other hand,
if 2 < p < n—2, not every lattice A in R, can be obtained as the pth
compound of some lattice L in R,. For the lattice A may be chosen such
that the N2 coordinates of its N base points are algebraically independent
real numbers. Then no point of A distinet from O lies on the Grassmann
manifold £(n, p) because this manifold is defined by homogeneous quadratic
equations with rational coefficients. But, by the definition, a compound
lattice is always generated by its points on L(n, p).

11. Let K be again a bounded, closed, symmetric, convex body in E,,
and let K = [ K|® be its pth compound body in Ry. There is some interest
in comparing the number-geometrical properties of K with those of K.
A few such properties will now be considered.

One basic functional in the geometry of numbersis the lattice determinant
A(K) of a body K; it is defined as the lower bound of the determinants d (L)
of all K-admissible lattices L. Here L is said to be K-admissible if none
of its points distinet from O is an inner point of K. The lattice determinant
A(K) is defined in an analogous way; note that in its case the lower bound
is extended over all K-admissible lattices, not only the compound ones.

Minkowski’s classical theorem on convex bodies is equivalent to the
inequality A (K) = V(K).

Another well-known theorem of his, which was first proved by E. Hlawka,
states that o
V(K) = 2Ln)A(K) (L) = 3 177).
Similar inequalities
2¥A(K) = V(K) = 20(N)A(K)
hold, of course, for the compound body. Therefore Theorem 1 at once
leads to the following result.

TurorREM 2. There exist two positive constants cq and cg, with ¢y << c5 and
depending only on n and p, with the following property.

If K is any closed, bounded, symmetric, convex body in R, , and if K = [ K|®
is its p-th compound in Ry, then

¢y <AKAK) " <¢;, where P = (z: i)
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Remark. One can define a second functional
A*(K) = infd(A),
where now the lower hound extends only over those K-admissible lattices A
in Ry that are pth compounds of lattices L in E,. Then it may be proved
that A(K) and A*(K) satisfy the inequality
A(K) < A%(K) < g A(K),

where ¢, > 0 again depends only on n and p. Hence Theorem 2 remains
valid, but with different constants, if in it A(K) is replaced by A*(K).

12. Let K and K = [K|® have the same meaning as before; let F(X)
and @(E) be the distance functions of K and K, respectively, and let L be
a lattice in R, and A its pth compound in R,.

A well-known general theorem of Minkowski deals with the successive
minima of K in L. These minima are defined as follows.

There exists a point X; # O in L such that F(X,) = m, = m,(K, L) is
a minimum; m, is called the first minimum of K in L. Nextlet 2 < k < n,
and assume that the points X, X,,..., X,_, in L and the corresponding
successive minima

F(X,) = my, = m,(K, L) (h=1,2..,k=1)
have already been defined. Then there exists a point X, in L linearly
independent of X, X,,..., X, ;| for which F(X,) = m, = m, (K, L) is as
small as possible; m,, is called the &-th minimum of K in L. Thus the n lattice
points X, X,,..., X, are linearly independent, and the successive minima
satisfy the inequalities

0 <my <<my < ... <m, << 0.
These minima also satisfy the following property. IfY,, Y,,...,Y, are any n
independent points of L ordered such that
FI) < FY,) <. < F(Y,),

then P) =my, FY) =my . F(Y,)=m,

In the last chapter of his Geometrie der Zahlen, Minkowski proved the
fundamental inequalities

20n!)Ld(L) << mymy..om, V(K) < 27d(L) (1)

which contain his theorem V(K) < 2?A(K) as an obvious consequence.

Naturally these results have their analogues with respect to the com-
pound body K and the compound lattice A. There exist N linearly inde-
pendent points E,, &,,..., Z in A generating the successive minima

O(Eg) = px = px(K,A) K=12..,N)

5388.3.5 Bb
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of Kin A, and these satisfy the inequalities

V(N 1) d(A) < pog gt V(K) < 2V0(A). )
Also if H,, H,,..., Hy are N linearly independent points of A arranged so
that D(H,) < O(Hy) < ... < B(Hy),
then O(H) = e O(Hy) = gy ooy D(Hy) = pye (3)

13. Our next aim will be to find relations connecting the two sets of
minima m, (K, L) and px (K, A). This work will be based on the inequality

¢ < V(KV(K) P <c, (1)
of Theorem 1 and on the equation
d(A) = d(L)P (2)

which connects the determinants of L and A.
From this equation, and from the two formulae (1) and (2) of the last
section, it follows immediately that

2N-nP 1 pa---py V(K)
] < ‘)N~nP ! P.
N! < = mymy..m, V(KPP (1)

Therefore, by (1), there exist two positive constants ¢, and ¢y depending
only on n and p and such that ¢, << ¢g and
o (my Mgee.m) )P < g prgee iy << Cg(Mg My, )E. (3)

We have thus obtained an inequality in which the only variables occurring
are the successive minima of the two bodies. As will be proved, this single
inequality can be replaced by a set of inequalities, one for each of the u’s.

14. Form the N products
‘]L'[Vﬂ/z.“vz; = mV1 ml’z“'ml/p’
where v, v,,..., v, run over all sets of p indices such that
1<y <y <.o. <y <10

We arrange these products in order of increasing size and rename them
then M, M,,..., My; thus

0< M, <M< ..<M <c.

It is easily seen that

M, My.. My = (mymy...m,)~. (1)
Next we associate with each product Mg = M,,, ,, the point
H* - Hflvz Vp [Xu? "7va] (2)

which evidently belongs to A. Then Hf, H;‘,..., Hi{, are linearly independent.
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First, since X;, X,,..., X, are by hypothesis linearly independent, every
point X in R, is of the form X = ¢, X+, X,+...+t, X, with real coeffi-
cients t,. Secondly, every point E on the Grassmann manifold (n, p) is
the compound E = [X®, X® . X®)] of p suitable points X®, X® ., X
in R,, and so can be written in the form
E=rH b HE . 7y HY (3)
with real coefficients 7. Finally, as we saw in § 7, every point in Ry may
be expressed as a linear form with real coefficients in finitely many points
on &(n, p) and is thus also an expression (3). But this means that
HY, HE,..., HY

generate R, and are therefore linearly independent.
It was proved in § 9 that

DE) = inf 3 F(XP)F(XP)...F(XP),
p=1

where the lower bound extends over all finite decompositions

[1]

r
= 3 X xp)

Hence the special decomposition (2) of H gives the inequality

O(HY) < F(X,)F(X,). F(X,) = m,mm, = M. (4
Denote now by H,, H,,..., Hy the points Hf, Hf,..., H} rearranged in such
a way that D(H,) < D(Hy) < ... < D(Hy).

Then also d(Hg) < My (K =1,2,..,N). (5

For the numbers M;; were ordered according to increasing size; by (4), none
of the first K values ®(H¥), ®(H¥),..., ®(H%) can then exceed M.

15. The results desired now follow quickly. On combining the inequali-
ties (5) of the last section with the inequalities (3) in § 12, we find that
e < O(H) < M (R= 1,2, N). (1
On the other hand, by the formulae (3) in § 13 and (1) in § 14,
fg Py == Co(My Mg )P = ¢y My M,.. My,
whence
N
pr = e My My My ] Myg' = c; My (K=1,2.., N). (2)
Fi
The two inequalities (1) and (2) contain the second main result of this
paper.
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TarOREM 3. There exists a positive constant ¢, depending only on n and p,
as follows.

Let K be a closed, bounded, symmetric, convex body in R, and let K = [K|®
be its p-th compound body in Ry; let L be an n-dimensional lattice in R,,, and
let A be its p-th compound in Ry; and let

my, = m, (K, L) (k=1,2,.,n)

and 10 ‘LLK(K,A) (K == 1, 2,..., N)

be the successive minima of K in L, and of K in A, respectively. Let the N
products

My = M,,, , =m,m,.m, (I <y <vy<<..<w < n)

be numbered in the order of increasing size. Then

C711[K < MK g J’l[]{ (K == 1, 2,..., J.V).

16. In order to connect the last theorem with a known result, we shall
study the special case when p = n—1, hence N = nand P = n—1, a little
more in detail.

In this particular case, both K and K — [K|®=V lie in R,. There is a
further convex body in R, that now becomes of importance, the body
denoted by K-! which is polar-reciprocal to K with respect to the unit
sphere ¢,. This body K- consists of those points ¥ in R, for which

XY <1 forall XeK.

Here XY = a,y, +2y 5+ ...+, y, denotes the inner product of the points
X = (@1, Tgyeory ) aNA Y = (4, Yoseres Up)-

Assume, in particular, that K coincides with the unit sphere ,. The
same is then also true for K-! because the hyperplanes XV = 41 in
Y -space have the distance 1/|.X| = 1 from O, and so K ~1is the intersection
of the half-spaces XV < 1 where | X| = 1.

Next, the compound body K = [K|"-Y now likewise becomes the unit

—

sphere ¢,. For the distance function ®(Z) of K is in this case given by

r
®(E) = inf 21 XX XD,
o=
where the lower bound extends again over all decompositions
r
5= 21 (XD, X, X Y]
P

of E. Here the compound point [X®, X@ X®-V]in R has as its co-
ordinates the distinet minors of order n—1 of the (n—1) X n matrix formed
by the coordinates of the points XU, X® . X®-D  We may assume that
these minors have once for all been numbered and given appropriate signs
in such a way that the inner product X .[X® X® X#-D]becomes equal
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to the determinant {X,X® X®  X®-D identically in the arbitrary
point X. The decomposition of E implies therefore that

[1]
[I]
{1]

r
Ef=EE = Y {&, XV, X _, X@-1),
p=1

and here
]{E,X;}),X;?),...,X;,""l’}] < ]E[]X‘f})HX;?)L..]Xf,"*D],

by Hadamard’s determinant theorem. Therefore

<

B < 3 IXO|XD]..|X@0),

p=1
whence D(E) Z XD XD > B
Hence K: ®(E) < 1is containedin ¢,,: |E| << 1. To prove that also ¢/, <K,
it suffices to show that every point 2 Wlth |2 = 1 belongs to K. We can

select n—1 points X®, X@ . X®-D on the unit sphere | X | = 1 which are
orthogonal to E and also in pairs to one another, and for which, moreover,
the determinant {Z, X®, X® _ X®-D} hag the value 4 1. The compound
point [XW, X® . X®-1] — H say, belongs then to K, and it is identical
with B because H is likewise orthogonal to all points X®, X®,... X®-D and
has the property that

EH = {2, X0, XO) XD} — 41,

17. There is still a simple connexion between K = [K]®»D and K-1 when
K is now an arbitrary bounded, closed, symmetric, convex body in R,
Before proving this, let us first consider the effect of an affine trans-
formation X - X’ = QX applied to K on the two corresponding bodies
K and K-1. Denote again by w 5 0 the determinant of Q; let further
X, X0, X® XD be n arbitrary points in E,. From the definition of
the compound transformation Q-1

[QXD QX® | QX*e-D] = Qn-D[XD X@ X©«-D]
Next, from the multiplication law for determinants,
{QX, QXD QX®  QXC-D =  {X, XD X X*-D)
It follows then from the relation between the compound and the deter-
minant given in the last section that
QX Qu-D[XD XO  X0D] = X . [XD XO  X€-D]

In thisidentity, [ X®, X® . X®-D] can be made to coincide with any given
point Y in R,. Hence

QX 0 1Qe-DY = XV

identically in X and Y.
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Therefore, as Q transforms K into the body QK, and as K = [K]J®-1
simultaneously becomes Q~VK, the polar-reciprocal body K-! is at the
same time changed into the new body »-1Q®-VK-1,

18. The desired connexion between K = [K|"-1 and K- is now easily
found. Just as in the proof of Theorem 1, let E be the ellipsoid of smallest
volume circumscribed to K so that again

ntE < K < E. (1)
Let further X — X’ = QX denote the affine transformation which changes
the unit sphere @, into E = Q@,; it may be assumed, without loss of

n

generality, that the determinant w of Q is positive. The compound body
E = [E]"Vis then equal to E = Q®-D@G, since [G¢,]" D = ¢,. Hence

noDQRDE < K o QD@ ()

in the same way as in the proof of Theorem 1.
An analogous relation holds for K-1. It is obvious from the definition
of the polar-reciprocal body that

(tK)t =¢t1K-1 for t >0, and K;! 2 K;!'if K| < K,.
Now E = Q@ and therefore, by the last section,
Bl = o 1Qn-D(G | (ntE) = nlo 1Qe-VG

because ;1 = (,. Hence

w 1QO-DG, < K1 < nte-1Q0-DE, | (3)
whence, on combining (2) and (3),
n oK1 < K € oKL (4)

In this inequality, w has the value
w = V(E)V(G,),
and so, by (1), satisfies the inequality
VIK)V(G,) ! <o <a"V(K)V(G,).
Finally on substituting these estimates for w in (4), we find that
n rV(K)V(G,) 1K < K < oi"V(K)V(G,) 1K1,
and obtain the following result.

THEOREM 4. There exist two positive constants cq and ¢,y with ¢y < ¢,
depending only on n, with the following property.

Let K be a closed, bounded, symmetric, convex body in R,; let K-1 be its
polar-reciprocal body; and let K = [ K|V be its (n—1)th compound body.

Then g VIE)KE-1 < K < ey V(K)K-L.
Remark. One can prove similar relations connecting the bodies [ K-1]®)
and [K|"-P) when p = 2, 3,..., n—1.
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19. We next introduce the reciprocal of a lattice. Let again L be any
n-dimensional lattice in R, of basis Z,, Z,,..., Z,, say. Then L-'isdefined
as the set of those points ¥ in R, for which

XY is an integer for all X € L.
One shows without difficulty that L-! is likewise a lattice, viz. the lattice
of basis Z3, Z,..., Z,, where these points are defined by the equations
Z, 7, — {éi:;f (h ko= 1,2,.., n).
It is also easily seen that
d(L) = {d(L)}~*

Again the (n—1)th compound lattice A = [L]"»V of L lies in R, and

has the determinant
d(A) = {d(L)}” = {d(L)j.
We show now that L' and A are similar lattices.

In the special case when L coincides with the lattice L, of all points with
integral coordinates, it is evident that also L' = Lj and A = L,. Let
now X - X' = QX be the affine transformation which changes L, into
L = QL; Qis of determinant w = d(L). Then also

A = [QL" Y = Q=YL and L=t = {d(L)}"1Q"-VL,,
the second equation following from the formulae given in § 17. Hence
Lt = {d(L)} A = {d(L)} [ L]"-D.

20. The following result can now be deduced from Theorems 3 and 4.

THEOREM 5. There exist two positive constants ¢,y and ¢qs with ¢;; << ¢4,
depending only on n, with the following property.

Let K be a closed, bounded, symmetric, convex body in R, , and let K1 be
its polar-reciprocal body; let L be an n-dimensional lattice, and let L= be its
reciprocal lattice; finally let

my, = my(K,L) and mj = my(K-1, L) (k=1,2,.,n)
be the n successive minima of K in L, and of K~ in L1, respectively. Tken
C1p K MMy, gy < Cpy (k=1,2,.,n).

Proof. By definition, my, is the smallest positive number such that mj, K -1
contains k linearly independent points of L~1; and similarly pu; = pu,(K, A),
where K = [K]®V and A = [L]™D, is the smallest positive number such

that u, K contains £ linearly independent points of A, and so c-lf(ilklﬁ) K contains
k linearly independent points of {d(L)}~1A = L-!. Now, by Theorem 4,

VIK)K-1c P ke

C“d(L} = L) cmd(L}V(K)K -
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It follows therefore that

V(K , V(K
097{(7;)‘)Hk < my < Clo’—((’ZT):U’k (k=1,2,.,n),

1 d(L) , 1 d(L) ,

— < < — L E=1,2,...n). (1

€10 V( )mk’ M < Co V(I()mk ( n) ( )
In the present case p = n—1, the numbers My of Theorem 3 take the

form

that is,

My Mey... M

M, — n (k=1,2,.., n),

m, ~k+1

because this numbering implies that

M, < M, < ... < M,

n

as it should be. Theorem 3 states now that
e My, < py < M, (k=1,2,..n),

so that, in the present case,
Cg Mg Moo My, g My g << My Mg, (k= 1,2,..., n).

We replace here ;. by its lower and upper estimates from (1) and obtain
the inequalities

My My...m,, V(K , my My...m,, V(K

erog ML) < i, < g M VD2
where, by Minkowski’s theorem (1) in § 12,

2% mymy..m, V(K)

It S Sl A ¥ on,

n! d(L) <
Therefore, finally,

2n(m!) e e <mymy, gq < 2%, (k=1,2,..,n),

whence the assertion.
Theorem 5 is not new. After an earlier result by M. Riesz (7), T proved

(6) that 1 <mym, 4. < (n!)? (k=1,2,.,n).

Here the upper bound can be further improved by means of recent results
in the geometry of numbers, e.g. to
nd

7)7‘;»' My —k+1 < mé’
n

where (7, is the unit sphere in R, and A(@,) is its lattice determinant, just
as before. In the present paper the detailed proof of Theorem 5 has been
given for the sole purpose of showing that this theorem is a consequence
of the more general theory of compound bodies.
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21. My original work on Theorem 5 arose from the wish to generalize the
so-called transfer principle of A. Khintchine (5) in the theory of Diophantine
approximations. Weshallnowdeduce from Theorem 3 a very general transfer
principle which contains most of the previous results as special cases.

We choose for the convex body K in Theorem 3 the cube

;xl} < 15 !xZI < la ceey lxn] < 1
of distance function
F(X) - max(}xll, 'xZIP-': [xn])
The corresponding compound convex body K = [K|® in R, is somewhat
complicated in the case of general p, and it is not quite simple to find its

distance function ®(E). Fortunately, there is no need to give the exact
expression of ®(E), and a rather crude inequality will suffice.

Let W(E) = max(|&], [&)..., |€x])

denote the distance function of the cube @: W(E) <1 in R,. There
evidently exist two positive constants ¢;5 and ¢, with ¢, < ¢,, and depend-
ing only on 7 and p such that the cube ¢, @: ¥(E) < ¢;;tis contained in K,
while K is contained in the cube ¢3! @: W(E) < ¢g3'; this follows from O
being an inner point of K, and K being bounded. Hence
e V(E) < ®E) <y, V(E) forall Ee Ry, (1)

giving the wanted estimate for ®(E).

Let now L be any lattice in R, of determinant d(L) = 1, and let
A = [L]? be its pth compound in R,; then also d(A) = 1. The points
X = (v, 2,,...,x,) of L have the coordinates

3
Ly = kzlahkuk (h’ = 17 23"'9 n);

where u;, uy,..., u, run over all integers; the coefficient matrix (a,,) may
be assumed to have the determinant 1. Similarly, the points

g = (fls §2>"'7 gN)

of A are given by
N
éu = 3 aifkve (H=12.,N),
K=1

where also vy, v,,..., vy assume all integral values, and where the coefficient
matrix (a{f)) is likewise of determinant 41, and has as its elements the
minors of order p of the original matrix («,,), arranged in the order that
was fixed in § 1.

As before, let m;, = m (K, L) and g = pr (K, A) be the successive
minima of K in L, and of K in A, respectively; also let the products M be
defined as in Theorem 3 so that

Cr .ﬁ[h' \< 12574 < 'DIK (K == ]., 2,;.., IVY). (2)
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Minkowski’s inequality (1) in § 12 takes the form
(n)t < mymy..m,, <1, (3)

because in the present case V(K) = 2" and d(L) = 1.

Since m, < my < ... < m,, M; = mym,...m, is the smallest of the N
products M. The minimum value of M, is attained when all minima my,
where 1 < k < p, have the same value, and then M, = m{. On the other

hand, by (3), 1

Mo<—

My iy My yee M

n
and here the right-hand side becomes a maximum when the denominator
is a minimum. This is obviously the case when my, = my; = ... = m,,, and

then (3) gives My = My = ... = m, = (n!my)~Y@-D,

=
whence My = (my, 3 my, gem,) ™t << (g )02,
We have thus proved that
mp < M, < (n! ml)(n‘—m/(n—l)
and therefore, by (2), also
comd < py < (nl )PV,

The number p, is the minimum value of ®(E) for the points E 7 O of A.
Now, by (1), the quotient V'(E)/®(E) lies between two positive constants
that depend only on 7 and p. Hence, with a slight change of notation, the
following theorem has been proved.

TaEOREM 6. There exist two positive constants ¢,5 and c,5 depending only
on n and p, with the following property.

Let (ay;,) be a real square matria: of order n and determinant +-1, and let
(@{P);) be its p-th compound matriz, which is formed by the minors of order p
of the first matrix. Put

N
F(X)= | nax lz ahkxkl and ®(EF) :H=le,1:.}.(.,N(le:1a%OI){gKl)’

and denote by m and w the minimum of F(X) and that of ®(E) at all points
X = (2, ¥gpernr @) 7 Oand B = (&, &,y Ey) F# O withintegral coordinates,
respectively. Then

p < Cpm@=PDand  m < cqq P

Theorem 6 contains most of the older transfer principles as special cases,
and it allows similar applications, e.g. to inhomogeneous Diophantine
approximations. It is further possible to deduce from it a still more general
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result involving, in addition to the real linear forms, linear forms with
coefficients in one or more p-adic fields.
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