A REMARK ON SIEGEL’S THEOREM ON ALGEBRAIC
CURVES

K. MAHLER

The main case of Siegel’s theorem on algebraic curves™ may be stated
as follows:

TaroreMm 1. Let
C: fle.y)=0

be an irreducible algebraic curve of genus g == 1, f(x. y) being a polynomial
with algebraic coefficients.  Let I be an algebraic field of finile degree over the
rational ficld: let o be the ring of integers in K5 and lel § be a positive rational
integer.  Then there are at most finitely many points (v, y) on € for which
jreo and ye K.

In this paper, we shall generalize Theorem 1 and prove a rvesult in
which neither the coefficients of f(x, ) nor the coordinates x. # need he
algebraic numbers.

1. Denote by J the ring of all rational integers. and by £, ¢ and C
the field of all rational numbers, the Gaussian field, and the field of all
complex numbers, respectively. Further denote by X and Y a finite
J-module and a finite R-module in C, respectively. In other words,
X is the set of all sums

T =y &y Eot .y, €, (g, Uy, oony wy,€0),

where £, &,. ... &, are finitely many fixed complex numbers that are linearly
independent over K. Similarly Y is the set of all sums

U ‘?’71771“%—‘2)27]2‘{_"‘+—Z71¢ e (/Ul‘ Voo e U € RL

where again 9y, 9,, ..., 0, are certain fixed numbers in € that are linearly
independent over R.

We denote by Z =X x ¥ the product space of X and ¥ consisting of
all points (v, y), where weX and yel. TFor shortness, we call Z a
J R-lattice.

The generalization of Siegel’s theorem takes the following form :

TaeorEM 2. Let

# (. L. Siegel, Abh. Preuss. Akad. Wiss. (1929), No. 1.
+ An analogous theorem holds in which the coefficients of f(x, y) and the elements of
the two moeduli X and Y are p-adic numbers or, more generally, v-adic numbers.

[MaTHEMATIKA 2 (1955), 116-127]
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be an irreducible algebraic curve of genus g =1, f(x, y) being a polynomial
with arbitrary veal or complex coefficients ; let further Z be an arbitrary real
or complex J R-lattice.  Then at most finitely many points of Z lie on €.

That this theorem implies Theormn 1 is obvious because, by classical
theorems on algebraic fields, j~'o is a finite J-module and K a finite
R-module in i, Conversely,
assertion to one covered by Theorem 1.

i

e’

T L{w em 2 will be proved by reducing the

root of Theorem 2 will be based on the following:

1. Letl: Fx
le algebraic curve of ger

i) == 0, where F'(x, y)e Cla, y]is of degree d = 3,
g =1, A positive number & exists,

Akl

be an ir

with the following property

If Ge. }&(, [z, Jj is of the same degree d, and if the absolute values of
all coefficients of G{x, y)—F(x, y) are less than 8, then the curve A G(x, y) = 0
is likewise {rreducible and al least of genus 1.

To prove this lemma, we first note the nearly trivial fact that every
limit curve of a set of reducible curves, all of the same degree, is itself
reducible. In the non-trivial case of irreducible curves, the lemma is
contained in the following theorem of B. Segre™:

“If O is an infinite set of trreducible algebraic curves in r-dimensional
projective space, all of order d and genus g, then the genus of no irreducible
miting curve of © is greater than g.”

3. We now begin the proof of Theorem 2. This proof is indirect.

Let GC: f(x, y) =0 and Z be defined as in the theorem. We shall
assume from now on that the assertion is false, so that the intersection of
curve and lattice:

W=¢EnZz
contains infinitely many distinet points
y) = (uy & -y 52“{' ety s Uyt E Y, T,
This hypothesis will finally lead to a contradiction.
Denote by Uy, Uy eens O

all the coefficients of f(x, y), arranged in a fixed, but arbitrary, order. The
{++m-+n complex numbers

o & :
S D T S 52’ cre ‘gm? N Moo -+

* Proc. London Math. Soc. (2), 47 (1942), 351-403, in particular p. 363.
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generate a certain smallest extension field

P: R(ala 0(2, seey al’ gh 623 sy §m7 7]1: 7723 LRRS] nn)
of R.

We may immediately exclude the case that P is a finite algebraic
extension of R. For then a positive rational integer j exists such that
J€us JEas wos Jén

are elements of the ring o of all algebraic integers in K =P. It follows
that there are infinitely many distinet points (x, ) on € for which jxeo
and y& K, contrary to Theorem 1.

4. The extension field P is thus transcendental over B. Asitis obtained
from R by adjoining finitely many complex numbers, P may be obtained
as an extension of the form

P = R(oy, 09, ..., 0, 7).
Here 015 Ogy «evs Op,

where p > 1, are complex numbers which are algebraically independent
over R, while 7 is a complex number which is algebraic, say of degree ¢,
over the purely transcendental extension

Py= R(oy, 0y, ..., o)
of R.
The number = may still be chosen in many distinct ways. There is
no loss of generality in assuming that = is integral over the polynomial ring

I = RJoy, 0y, ..., 0],
hence that = satisfies an irreducible algebraic equation
Q0w 00 o 03 D=4 2 Quoy, 0y oy 3) 71 =0
with coefficients
Qc(ay, 03, .05 0p) k=1,2,..9)
in I. The polynomial @(oy, oy, ..., 6,5 7) then belongs to I[7].

5. In terms of the numbers oy, oy, ..., o), 7, the coefficients of f(x, y)
and the generators of X and Y can be written as rational functions

_._AA(O'I, O, -5 Op, 7-) B
o = Aoy, 0g, ...y a'p) A=12 ..,0),
— XA(O']_, 09y +-ey Op, q-) .
fﬂ o _X(o'}, Oy, «vv) O'p) (‘u—— 1, 2, ..., m),
Ol (7w S (S WS

Y (o4, 0y, ..., 0})
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Here

Ay(oy, 09y oy 0, 7), Xou(oy, 09y ooy 0y ™) Y, (0y, 09 .., 0, T)

are polynomials in I[7], while the denominators
Aoy, 0y, «ors 0,), X(oy, 09y wory 0), Yoy, 0y .y 0)

belong to I. These denominators are distinet from zero, both as formal
polynomials and as complex numbers.

On substituting the expressions 4,/4 for the coefficients «,, f(x, y)
assumes the form

_ D(z, y|oy, oy, ..., Ops 7)
S y) b(oy, 09, .., ap) ‘

where @ lies in the polynomial ring
I[z, y, 7] = Rz, y, 0y, 03, ..., 0y, 7],

while ¢ belongs to I and is distinct from zero, again both as a formal poly-
nomial and as a complex number.

We may then replace f(x, y) by ¢f(x, y) without changing the curve €.
Hence there is no loss of generality in assuming that ¢ =1 and that
therefore

f(x’ y) = D (x, ylo'la Ggy «vey Ops 7)

is a polynomial, with coefficients in R, not only in the variables z and ¥,

but also in the complex numbers oy, oy, ..., Ops T
6. Now let
(@, y) = (uy &1+% Eat ooty €y V30t 40, 7,,)
be an arbitrary point of Z. Then, in terms of oy, oy, ..., Ops T
m n
2w, X, (01, 0y, oovy 0y, T) 2 v, Y, (0, 03, «vns 0p, T)
@ =r=t and y=""
X(0y, 09, .05 0p) Yy Y (o1, 0, ..., 0p)

On substituting these expressions for z and ¥ in
f@, y) =0, y|oy, 04, ..., 0p, T),
f(x, y) becomes a quotient

W (g, Ug,y «ney Uy, Vg, Vg, oovy V] 04, Oy vy Op, T)
X(oy, 09y vvvs )2 Y (0y, G, ..., )%

f(x7 ?/)”—‘

Here the numerator ¥ belongs to the polynomial ring

Ry, Ug, «ovy Wpyy Oy, Vgy ooey Vpy Oy Gy wney Opyy T,
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and d denotes the degree of f(x, ) in # and . By the construction,
X(oy, 095 «ovs 0) #0, Yoy, 0, ..., o,) #0,

so that the quotient is well defined.
By hypothesis, W = €~Z has infinitely many distinct elements
(z, ). Each such point is characterized by the m--n parameters

Uy, Ugy oevy Uy, Vg, Voy oney Uy

of which the first m are rational integers and the last » are rational numbers.
For shortness, denote this set of m-+n parameters by (u,, »,) and write
Q for the set of all systems (u,, v,) that correspond to elements of W. To
each element (u,, v,) of Q there corresponds an equation

W (U, 0, |0, 0gy vvvy 0y T) =W (g, Uy, ooy Uy, 03, 0y, oo, 0, 0y, Oy ey 0, 7) =0

connecting the numbers oy, oy, ..., 0,, 7. The left-hand side of this equation

is an element of I[7] because the parameters u, and v, are rational numbers.
This left-hand side is therefore divisible by the irreducible polynomial

Q(oy, gy -ovs Gy T)-
7. We now replace the p independent complex numbers

0'], 0'2, ceny O'p,

and the complex number = connected with them by the equation
Q(Ul, gy +ee5 Op s ’T') =0,
by p independent complex variables

81> S5 v Sp

and a dependent complex variable ¢ for which
Q(S15 S35 +vv5 8p3 1) =0.

The change from oy, oy, ..., 0,, T t0 8, 8, ..., s,, ¢ maps the field
P = R(oy, 0y, ..., 0, 7) isomorphically onto a new field

P#* = R(sy, 85, ..., 8,5, 1)

<0 Opo

and preserves all rational relations. Thus f(z, y) is mapped on a new
polynomial
[#(@, y) =0z, y|sy, 89, ..., 8, 1)

with the coefficients
A(8y; 89 +e-y 8y, 1)

o=
* A(sb 827 LERX) Sp)
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Simultaneously, € is mapped on the new curve
C#: f#(, y)=0.
Next, the generators ¢, of X and », of Y are changed into the generators

. :Xu(sl, Sgy weey Spy )

A
(815 S35 +-+5 8p)

(w=1,2,...,m)

of a new J-module, X* say, and the generators

s Yv(S1, gy onny Sp, 1)

K Y (s, 89, +evs 8p)

(v=1,2,..,n)

of a new R-module, Y* say. Both sets of m generators ¢,* and of
n generators 7,% are linearly independent over R as functions of

815 89, +vus 8p, £, because they are so for the special values
8§, =07, S5=0y ..., =0, l=m.

Define Z#* as the JR-lattice X#*x Y*. Then to every point
(, y) = (uy fl“’“?‘z St e AUy Epy V1T V279t AV, 7,)
of Z there corresponds the point
@, y*) = (uy &% +up &%+ A1y, £, %, vy * 0y 0,7, )

of Z*. In particular, the points (2%, y*) belonging to systems (u,, v,) in
Q form the set W# = €*nZ* of all points of Z* that lie on €*. It is
clear that, for (u,, v,)eQ, the equation

¥ (u,, v,]81, S5 «vvs Sy, 1) =0

is satisfied since the polynomial ¥ is divisible by @.

8. Denote by C? the p-dimensional space formed by all points
S= (81, S -+vs Sp)s 8 =(8/, 83, ..., 8,/), @= (04, 0y, ..., 0,), etc.,

with complex coordinates. We consider CP as a linear vector space over C,
and we make it a metric space by defining the distance between any two
points s and s’ by the formula

p(s, 8') = +{s;—s, P+ |sa—s) [P+... 4| s,—s, BV

With respect to this metric, terms like neighbourhood, closed and open
sets, closure, ete., can be defined as usual.
By definition, ¢ is a root of the algebraic equation

q
Q(sb Sa5 weey Spa t)th+ §1 QK(S]J Sg5 «ves Sp) ™ =0.
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This equation is irreducible in R[s;, s,, ..., s, t], but may become reducible

in O[sy, 8y, ..., 8, t]. In any case, its diseriminant

D(s)=D(sy, 83, ---, sp),

say, with respect to ¢ is not zero identically in s and lies in the polynomial
ring R[s;, 8y, ..., 8,]. Since oy, 0y, ..., 0, are algebraically independent
over R, we necessarily have

D(s) 0.
Hence a neighbourhood U, of o exists such that
D(s)#0 if seU,.
In this neighbourhood, the equation ¢ = 0 has then ¢ distinct roots
t=1ty, ty, ..y t,

which form the branches of one or more algebraic functions of s. We
denote by t°(s) that root for which

10(6) =1.

Then, for se U, t°(s) is a continuous branch of an algebraic function of s,
as follows immediately from the form of the equation @ = 0 for #9(s).
Since further

Aoy, 03, ..., 0,) 70, X(oy, 0y, ..., 0,) #0, Y(oy, 0, ..., 0,) #0,
there exists a neighbourhood U, of ¢ contained in U, such that
A(Sy, 895 oees 8p) 70, X (54, 8y, ..., $p) 70, Y(sy, 83, ..ny 8,) 0 if se U,
In this neighbourhood, the expressions
Ax(sl', Sgy ++vs Sps tO(S)), X, (sl, Sg5 +evs Sps to(s)), Y,(sl, Sgs wees Sps to(s))

are continuous branches of algebraic functions of s, and so the same is true
for the quotients

A (51, -0s 5, 19(5))

“°(s) A(sy, ooy 8)
. C I

£,s) = <§2(81, - sp)(s)> ,

R A (R s IO))
)= Y 5,)

Finally
fo(x; y!S) =(D(x) ?/'81, 82’ AR Sp’ to(s))7
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for fixed x and y, is likewise a continuous branch of an algebraic function
of s if seU,.

The moduli X* and Y* become now moduli X°(s) and Y°(s) with
the generators £.,%(s) and 7,°(s), respectively. TFor variable s, these
generators are still linearly independent over R.

Denote by €°(s) the curve

6%(s): fo(a, y[s) =0,

by Z9(s) the JR-lattice X0(s)x Y°(s), and by WO(s)= €°(s)n Z°(s) the
intersection of €%s) and Z°(s). Then WO9(s) consists of the points

2%(s), °(s)) where
( )

2W(8)= 3 u, £9(s), 1) = % 1,7,%(5),
p=1 v=1

and where (u,, v,) run over the elements of Q. Corresponding to each

such point (x"(s), yo(s)) the equation

‘P’(u,‘, 0,81, S, ey S t“(s)) =0

holds identically for se Uj;.

9. By hypothesis, the original curve €: f(z, y) = 0 is irreducible and
at least of genus 1. Therefore, by Lemma 1, the same is true for all curves
€": f'(x, y) = 0 where f’ is of the same degree as f and is such that the
absolute values of all coefficients of f'—f are smaller than a certain positive
number 8§.

We apply this result to the two curves

C: flx, y)=0 and €°s): fOx, y|s)=0.
From the construction,
€%o) = €,

and the coefficients «,°(s) of €°(s) are continuous functions of s in the
neighbourhood U, of ¢. It follows then that a neighbourhood U of o,
contained in U,, exists such that, for se U, €°(s) is of the same degree as €,
while at the same time the absolute values of all coefficients of
fo, y|s)—f(x,y) are less than 5. Hence, for seU, €9%s) is still
irreducible and at least of genus 1.

10. As we found earlier, the generators £,°(s) of X°(s) and similarly
the generators 7,°(s) of Y(s) are linearly independent over R as long as s
is a variable point. On the other hand, there may be special points se U
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for which the generators of X°(s) or those of Y9(s) cease to be linearly
independent.
Let us consider the points s in U for which, say, the linear relation

U é‘:IO(S)“I—'M’Z §2O(S)+"'+um§m0(s) =0 (1)

holds; here u,, u,, ..., u,, are given rational numbers not all zero. This
equation is equivalent to

m
Zou, X, (sl, Sy weer Spy t0(s)) =0,
mn=1

and it does not hold identically in s. Hence ¢ can be eliminated from the
two equations

m
EluM X, (815 895 vees 8y 1) =0, Q(Sy, Sg, +vvy 85 1) =0,
o
The resultant,
H(u,|8)= H (1, Uy, .., Uy,| 81, Sg; vy )
say, is a polynomial in R[u,, u,, ..., %, 8}, S,, ..., 8,] and does not vanish

identically in s. It can be written explicitly in the form

g1 ga [
— > N N
H(u,|s)= % X ... X by, (g, g, ooy w,) 85830087,
§1=0 jo=0  j,=0
where the coefficients
kj"(u.u) = h’a‘l G e i,,(ul? Ugs «es 'u’m)
are elements of R[u;, u,, ..., u,]. These coefficients do not all vanish

and are rational numbers. It is of importance that the degrees
J1> 925 -5 p are independent of the special choice of the w,.
Evidently the relation (1) can hold for a point s only if s satisfies the

condition
H(u,|s)=0.

In exactly the same way we can treat linear relations
41 ’71°(S)+?)2 7720(8)_‘— e —I'-vn Yl'no(s) =0

between the generators 1,9(s) of ¥Y°(s), and we then obtain an analogous
condition

K(v,|s)=0,
where
9o s . .
K, |s)= X X ... Xk, 5050y .. 0,)8088 80

i1=0 4y=0  §,=0
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is an element of R[vy, vy, ..., ¥,, 8, Sy ..., §,]. Again, for rational
V5, ¥y, ..., U, Not all zero, the polynomials
k; (v) = kil jaonin(V15 Vo «oes v,)

do not all vanish and have rational values.

11. Denote now by K, any finite algebraic extension field of the
Jaussian field G of degree

[K;: G]>max(gy, 9,)
by K, any finite algebraic extension field of K, of degree

[K2: Kl] > max (92: 92’)>
ete., and finally by K, any finite algebraic extension field of K,_; of degree

[Kp: Kp—-]] > max (gp> gp/)'

This choice implies that if 6 is a primitive element of one of the fields
K, K,, ..., K, and if y 5= 0 belongs to G, then y0 is still a primitive element
of the same field. Hence the primitive elements of each of these p fields are
everywhere dense in the complex field C.

Let s = (s, 8, ..., 8,) be an arbitrary point in U for which s is
primitive in K, s, is primitive in K,, etc., and finally s, is primitive in K.
We can easily show that then both the generators £,°(s) of X°(s) and the
generators n,(s) of YO(s) are linearly independent over R.

1t suffices to consider the generators of X°(s), as the other module Y°(s)

can be treated analogously.
If a relation

wy £,0(8) 1y £°(8) 4.+, £,0(8) = 0
with rational u,, us,, ..., %, not all zero holds, then s satisfies the equation
91 g2 Ip . X .
H(u,s)= X X ... 2 hy 5 (U, Uy ooy Up)Sp8ge... 80 =0.
' 31=0 33=0  3,=0 -
However, the coefficients %, (u,) are rational numbers and do not all vanish.
Since s; is a primitive element of K, and since
[Ki: Bl Z=[Ky: G]l>gy,
at least one of the sums
41

h

=

71 a'a...j,,(u’lﬂ Ugs «v) um)sil: where 0 <]2 <92’ (] 0 <3p <gp’

must be different from zero, and all these sums are elements of K;. Next,
since s, is a primitive element of K,, and since

[Ky: K] > 9o,
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at least one of the sums

57 [P}

S o . S
LO 2 )lbjljz.m;p(wl. Uas oy Uy) S71852, where 0 <Cjy Ty, .o0, 057, <9,
Jp=0 jy=t_

does not vanish, and all these sums have values in K,. The argument
can be continued. Finally, s, is a primitive element in K, and

[A p 1 >gp
whence H{u,|s) 0.

The assumed Inear relation leads therefore to a contradiction.

12, The prootf of Theorem 2 may now be completed as follows. The
neighbourhood U of ¢ contains infinitely many points s with coordinates
that are primitiveelementsof K, A,, ..., &, vespectively ; for, as we found,
the primitjve elements of these fiel ds ave dense in . Select one such
point s =@ = (0, 0,, ..., f,)in U. Since the coordinates of # are algebraic
numbers, °(8) is likewise an algebraic number.

It follows now, from what has already been proved, that the curve
C%(f) is defined by an equation

O, y|0) =D (@, y|0,, by ... 0, °(8) ) =0

1

with algebraic coefficients, and that it is irreducible and at least of genus 1.
We can further show that there are infinitely many dls’siﬂot points of the
J R-lattice Z%(#) = X°(@)x Y°(f) on C(#).

For we know that all points

(«8), »(6))

:(“1 E00)Fup £2(0)+ ...+, £,°(0), ”17710(5)’1“5'27720(6)‘1‘~--”'f‘”;ﬁmo(a))

of Z%@) for which (u,, v,) belongs to the infinite set £, lie on the curve.
1t suffices therefore to prove that there correspond distinct points (x, y)
of the JR-lattice to different sets (u,, »,). But this is true because the
generators £,.°(f) of X°(#) and the generators %,°(8) of Y°(#) are linearly
independent over R by the proof given in the last section.

Denote by K the finite algebraic extension field of R generated by the
m--n numbers

510(0)! 620(9)7 cee é:mo(g)’ 7)10(5): 7?20{0): v Wno(g):

by o the ring of all algebraic integers in K, and by j a positive integer such
that the m products
jglo(g)’ jfzo(ﬁ)’ s ngn{)(e)
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belong to o.  The points (370(0), g/"(@)) of Z°(@) satisfy the conditions
Jro(@)eo, y(@)e K

of Theorem 1 and, by the construction, there are infinitely many such
points on €°(4).

As this is a contradiction to Theorem 1, the set ) cannot be infinite.
This means that the original curve € cannot contain infinitely many points
of the J R-lattice Z, hence that Theorem 2 is true. This completes the
proof*.

Note added December, 1955. 1 conclude this paper by stating a
conjecture which T have not as yet succeeded in proving and which may
be of some interest.

Tet R and ' be again the rational and comple*{ fields, and let 2 denote
an arbitrary subfield of €. Let C: f , 4) = 0 be an irreducible algebraic
curve of genus g > 1, where f(x, ) is a polynomial in Qfxz, y]. Denote
by G any system of ¢ points (a5, ¥ j), < j < g, on € which is rational over Q
(t.e. the rational symmetric functions of the coordinates of these g points
lie in Q). By means of the integrals of the first kind on €, the addition
of systems G can be defined [see A. Weil, Acta Math. 52 (1928), 20 ef seq.],
and these systems then form an Abelian group I', say.  Weil, in his paper,
proved that I' has finitely many generators if Q is any simple algebraic
extension of B. 1 conjecture, more generally, that I" has still only finitely
many generators when € is obtained from R by adjoining finitely many
algebraic or transcendental elements of C.
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* [ wish to express my thanks to D. G. Northcott for reading my manuscript and
noticing an error in my original proot of Lemma 1, and to B. Segre for giving the reference
to bhis paper of 1942 which allowed me to correct this error.
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