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Let F(z) be a rational function of z which is regular at z = 0 and so possesses a con-
vergent power series o
F(z)= X fi?
h=0

The problem arises of characterizing. those rational functions F(z) that have
infinitely many vanishing Taylor coefficients f,. After earlier and more special results
by Siegel 2) and Ward(4) I applied in 1934 (1) a p-adic method due to Skolem (3) tc
the problem and obtained the following partial solution.

Turorem 1. Asswme that all Taylor coefficients f, of the rational function F(z) are
algebraic numbers, and that infinitely many of them vanish. Then two integers L and L,
with 0 < Ly < L exist such that f,, is zero for all sufficiently large h= Iy (mod L).

In the present paper, the restriction on the character of the coefficients f;, will be
removed, by showing the

TaeoREM 2. Theorem | remains valid when the cocfficients f, of F(z) are arbitrary
complex numbers.

In the proof of this theorem, the assertion will be reduced to one relating to rational
functions with algebraic Taylor coefficients, and it will be assumed that the truth of
Theorem 1 has already been established.

1. If the difference of two functions is a polynomial, all but finitely many of their
Taylor coefficients are the same. Also to a given rational function one can always add
a unigue polynomial such that the sum function vanishes at the point at infinity.

Hence, without loss of generality, we shall assume from now on that the rational
function #'(z) is not only regular at z = 0, but also it vanishes at z = c0. We then call
F(z) a normed function. The restriction to normed functions considerably shortens
the discussion.

2. Let L and L, be two integers such that 0< L, < L. We say that F(z) has the
zero sequence L, (mod L) if all but finitely many of the Taylor coefficients f, with
h =1, (mod L) are zero.

This property may also be expressed in another form. Put

L1
e=eL and Hiz)= Y ¢hlF(ez).
j=0
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o0 L—1 ©
Evidently E(z) = }}jof,, 2" '}_‘JO eyt = [, > fuh
b= 7= ==

h EL,(Tnod L)

and so H(z) reduces to a polynomial if L, (mod L) is a zero sequence of F(z). On the
other hand, as F(z) is normed, all terms ¢/L1F (¢ 7z) of E(z) vanish at z = 00. The same
is then true for B(z) itself, and so H(z) vanishes identically. Hence the stronger property
fn =0 forall suffizes h=L, (mod L)

holds.

3. Assume again that L, (mod L) is a zero sequence of F(z). Let further oy, a,, ..., 2,
be the distinet poles of F(z); by hypothesis, none of these poles lies at z = 0. Then
F(e77z) has the poles

oy, oy, ..., o,
As was shown in § 2,
-1
E(z) = 3 ¢l (ez)=0.
j=0

Hence the poles of #(z) are cancelled by the poles of the L — 1 other functions e/ /' (e7iz)
where j =1,2,...,L—1.

It follows therefore that to every pole o, of F(z) there is a second pole o, (14 v) such
that oo, + 1is an L-th root of unity, which, of course, need not be primitive. Further-
more, F(z) has at least two distinct poles.

4. Let T = {& /a,} be the set of all those quotients o, /x, = I of distinet poles of F(z)
that are roots of utﬁty. Unless ¥ is the null set, there exists a smallest positive integer
M such that X consists only of Mth roots of unity which, however, need not all be
primitive.

Assume, in particular, that L, (mod L) is a zero sequence of F(z), and put

L
('L: 47‘/[) S ]/*7 jj' _ 7,{}{,;
so that L* = LA+ MM, L= L*L,

with certain integers A and M. By §3, ¥ is now certainly not the null set, because it
contains elements that are Lth roots of unity. Denote by X* the subset formed by all
these elements of ¥ that are Lth roots of unity. Thus the elements o, /o, of X* satisfy

both equations ,

o\ L (o \M
(”) =1 and ( ’1) =1,
a o

1z fz

T

Therefore X* consists only of L¥th roots of unity.

and so also the equation

5. We introduce now the L' new functions

L—-1

Ex)= Y ehF(eiz) (k=0,1,2,... . L —1).

j=0
j =k(mod L)
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As already shown, the sum of these functions

L'—1 L—-1
B = Y Byz) = X dhF(erz)

k=0 j=0
is identically zero.

It is obvious that #,(z) may have poles only at the points e/a, efa,, ..., /o, where
j=0(mod L), 0<j< L —1, while, for k = 1,2,..., L' — 1, poles of K,;(z) can lie only at
€'y, €'y, ..., 6o, where 1=k (mod L), 0 << L— 1. Let us suppose that e/a, is a pole
of By(2), and that e'or, is one of K (z), where 1 <k <L'—1.Then

t—j=k==0 (modlL’).
Hence L*(t—7)=%0 (mod L),
whence (e N1, eTf1.

Therefore, necessarily,
=
o, Fe'a,

because, ¢~/ being an Lth root of unity, the quotient

%,V, — (.;l'j ;%: 1
o,
would otherwise belong to £* and be an L*th root of unity; and this is not the case.
The function #(z) has then no poles in common with the other terms K, (z) of £(z),
and all its poles are also poles of K(z). Since £(z) has no poles, E(z) is thus a poly-
nomial. But, from its definition in terms of #(z), £ (z) is a normed rational function.
Hence, finally, . .
T B(z) is identically zero.
Put now g = el = e2nill,

L*—1 ®
Evidently Byz)y= Y yilali(y7z) = L* D fn2h=0,
iZo h—0
h=1,(mod L*)

whence fn =0 for all suffives h=L, (mod L*).
The following result has thus been established.

Levma 1. Let Ly (mod L) be a zero sequence of F(z); let ay, oy, ..., a, be the distinct

. . o
poles of F(z); and let M be the smallest integer such that all quotients &—"«” + 1, that are roots

v
of unity, are M-th roots of unity. If L* = (L, M), then F(z) admits the zero sequence
Ly (mod L*).

This lemma is of importance for later, because L* is a divisor of M, and M depends
only on the poles of F(z). We note that the lemma remains valid when #(z) is not normed,
but shall not use this fact.

6. We proceed now to the proof of Theorem 2.

The most general rational function F(z)#0 regular at z = 0 is of the form

Uy + a2+ ... +a,2"

PO = o e — e )
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Here e, ¢e,, ..., ¢, are arbitrary positive integers; a,, a,, ...,
numbers with a,,+0; and c«,, a,, ...

. are arbitrary complex

a,,, the poles of I'(z), are complex numbers that

are all distinct and different from zero, but are otherwise arbitrary. The function #(z)
is assumed to be normed, and therefore the inequality

m<e, +e,+...+e,
holds.

feel
If again Fz) =% f,2"

h=0

is the power series of /(z) in the neighbourhood of z = 0, let /7 be the set of all suffixe
h for which
fh/ = 0.

It is asswmed that H is an infinite set; the problem is to prove thet under this hypothesis
F(z) possesses at least one zero sequence.

7. From now on let X be the set of the m +n+ 1 parameters

r_ ~1 -1 —1
X ={ay,ay, ..., a7t ast, .. o,

that occur in F(z); the use of o, ' rather than o, will prove to be an advantage. Further
ut

b € == €yt ... e,

Then F(z) may also be written in the form

P = (=1 11y 3, 1 (10t

y=1 /L:-O y=

On developing here the last factor into a power series by means of the binomial
theorem, we see immediately that, for 4 = 0, 1,2, ..., f, is @ polynomial with rational
coefficients in the elements of X.

Hence, if X consists only of algebraic numbers, the coefficients [, arve likewise
algebraic. It is assumed that this is no longer the case; hence X includes at least one
transcendental number.

Denote by It the Gaussian imaginary quadratic field. The elements of X generate
a smallest extension field

P=RX)=Ray,a ....,a,, a7t ast, ... at)

m? "
over I. It is shown in algebra that this extension field may be constructed as follows,

We first adjoin to R a certain finite set of transcendental complex numbers

O Ogy -ony T

that are algebraically independent over R, so arriving at the purely transcendental

extension -
Py = R(oy, 09, ...,0,).

The field P is now derived from P, by a simple algebraic extension

P =Pyr)= R0, 04, ...,0

T

7 being a suitable complex number algebraic over Py.
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This number 7 may still be chosen in many different ways, and there is no loss of
generality in assuming that 7 is integral over the polynomial ring Bloy, oy, ..., 0,].
The equation for 7 has then the form

Q01,0 e, 0, T)=T04 3 > Qo Ty 0, )T =0,

]n
i1
where Q01,09 ...,0,) (k=1,2,...,q9)
are polynomials in Rloy, 0, ...,0,]. 1t may also be assumed that Q(oy, 0y, ..., 0,: 7),

considered as a polynomial in oy, 0y, ..., 07, 7, is irreducible over K.

8. The elements a, and o' of X are finite numbers in P. They can therefore be
written as polynomials in 7, with coefficients that are rational fanctions of oy, 0y, ..., 07
with numerical coefficients in K. Denote by A(oy, 0, ...,7,)70 the least common
denominator of these rational functions; A is thus an element of Rloy, oy, ..., 0,].

Then @, and o, take the form

Aoy, 09,00, T)
Y3 1 2 b
a, = " — c=0,1,...,m
“ Aloy,0, ... (v )
Aoy, 009, ..., 0,:T
and a;lzﬂv(,,l, 2o Op3 7) (v=1,2,...,n).

Aoy, 0y, .., 0)
Here the numerators

A0 09000, T), A0, 09, ...,0,:7)

belong to the polynomial ring Rlo, 0y, ..., 0, T].

On substituting these expressions for the elements of X, #(z) becomes a rational
fe) b

F(z) = ®(z

funection

Ty oves 0,5 T)

not only of z, but also of oy 0y, ..., 7, while its numerical coefficients lie in R. Tt
follows further, from thevepr (’sewmnonoi /5, as a polynomial in the elements of X with
coefficients in ,11., that these Taylor coetficients may be written as

4 .
= OMTL T TET) Gy
1l d 7 -~ 2
Aoy, 0g, .-, (T[)) h
where the numerators DGy, Tg s )5 T)

lie in the polynomial ring K[o |, 0y, ..., 7, 7], while the exponents d, are certain positive

integers depending on k. One may, in fact, choose d;, = ¢, +h+ 1; but we shall not need
this. The hypothesis on f, implies that

G0y, Ogy o0y T) = 0 it heH.

9. Let us now replace the algebraically independent complex numbers o, 0y, ..., &
by independent complex variables

815895 oevs Sy
and the complex number 7 for which

Q0,09 ..., 0,,T) =0
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oy a dependent complex variable ¢ satisfying
Q81,85 -5 8,5 t) = 0.
We then obtain a new rational function
Fo(z) = Oz 81,85, ..., 8,3 1)

of z, as well as of s;, sy, ... ¢, with numerical coetficients in £. This function has the

explicit form

Il’

e ag+afz+ . +ak Zn
F#(z) = -

(e~ of) s (z— of e .. (2 —ack)on’

A (8,80, ., 8,0
where ak = /{(, 1 Sas o0 S5 1)
A8y, 89, .25 8,)

w1 A(81 88,0 0)

and ol = - - =12 ...,n).
v A(81, 89, .-, 8,) ( 2w )

(pe=0,1,...,m)

Further it possesses the power series

«© 2.
PHz) = 3 [t
h=0
e Pp(Sps8as 8,0 8 ,
where = 1,,//,( 15920 -0+ 9p ) (h=0,1,2,...).

A(8), 89, .0, 8,)

Since A does not vanish identically, and since the change from o, 0y, ...,0,,7 to
81585 +o05 8yt maps P = R(oy, 0y, ..., 0,,7) isomorphically onto R(sy,s,, ...,s,,t), it is
clear that also

»

On(81: 89, s 8, t) = 0 and ff =0 if hell.

It is further obvious from the construction that for

S =0y, S§ =09 ..., 8,=0, =1,
: lons () — * K
the equations F*z) = F(z), ay=ua, af=a, [if=f
hold.
10. To simplify the notation, we introduce the p-dimensional space C? of all points
Y 8 2 o ! 4 ! —
S = (81,89, ..-,8,), 8 = (1.8, ...,8,), G = (01,04 ...,0,), ...,

with arbitrary real or complex coordinates, and we make C7 a metric space by defining
the distance p(s,s’) of two points 8,8’ by

’

= f S22 | g 2 s g |2
/)(S,S)——‘l 51 '5}! + ] Se— +. % 8, = p[ iz
Let R? similarly be the set of all points in O the coordinates of which lie in the
Gaussian field R; thus R? is dense in CP. We can then select in many ways an infinite
sequence of points
S ={s®,s? ™ 1 where s® = (s{? s ... s),

in R? such that lim s® =6, ie. lim p(s® 6)= 0.

k—>w Fe—>c0

From the form of the equation
Q81,825 -8, 1) = 0
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for ¢, it is further possible to associate with each point % of S a complex root, {* say,
of the equation D D e

4 Q(s0, 5P, ..., %, 409) = 0,

such that also lim % = 7.

F—>c0
11. Denote, for k= 1,2,3,..., by
]4’(/«')(3)7 (It(ﬂl"'), C‘E'k): /21\)’
the expressions into which F*), a¥ af, [
respectively. are changed on putting
s, =8P, s, =8, . s

Then F®(z) is the rational function

(k) (k) %) »m
. g’ +ay"z4+ ...+ 'z
f’“”)(z) o 0o " c m

- o . — () () (k) 4(k)
(z— ) (z— of)s . (z— aP)en D(z] sf, 897, ..., 85, 10)
o (z— ol

of z with the Taylor series >
(ke )
FoE) = X 0,
h=0

and here [P =0 if heH.

We must, however, assume that kis already sufficiently large, i.e. that s® is sufficiently
near to o, so as to exclude the possibility that one of the expressions a®, o, fiF
becomes infinite, or that one of the poles o vanishes, or that two of these poles
coincide. Assume, say, that these cases are excluded when k> k.

It follows now, from the continuity properties of a rational function, that

- (k) ; (k) 3 k) — f
imaf =a, lma?=c, limfi?=7f,

k—c k> k—>o0

for all values of the suffixes p, v and h.

12. The equation Q. 849, ..., sP; 10) = 0
for 1® is of degree ¢, and its coefficients lie in £; for both the numerical coefficients
of @, and the coordinates of 8%, belong to R. Therefore 1% ig an algebraic number at
most of degree ¢ over the Gaussian field, hence at most of degree 2 over the rational
field. Denote by K® = R(1%) the algebraic extension of R generated by ®; this field
has likewise a degree not greater than 2g over the rational field. From their defini-
tions, it is clear that the numbers

(k) (%) (k)
a‘/l, > Y, f/:,

all are elements of K®, as soon as k> k.

In particular, the Taylor coefficients f;* of

@
F9(z) = 3, fi0eh
h=0

are algebraic numbers, and furthermore infinitely many of these coefficients vanish,

fl =0 if heH.
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The hypothesis of Theorem 1 is thus satisfied. Hence, for every k> k, F(z)
possesses at least one zero sequence L, (mod L). Here we may assume that 0 </, < L.
Both L = L® and L, = L{¥ may still depend on k. We note that, by hypothesis,

m<eptegt ... +e,.

Hence also F®(z) is normed, so that all its Taylor coeflicients [0 satisfying b= L,
(mod /J) are zero.
13. Lemma I enables us to construct a zero sequence Ly (mod L) of F®(z) with
bounded L, hence also with bounded L.
The poles o, &, ..., o of F¥(z) hc in K®, and the same is therefore true for the
quotients of two such poles. Denote by X = X® the set of all those quotients
(Ic)
+1
cx““

that are roots of unity; we know, from §3, that X is not the null set. Hence a smallest
positive integer M = M® exists such th(xt all elements of X are Mth roots of unity.
By Lemma 1, F'®(z) admits also the larger zero sequence

Ly (mod L*), where L* = (L, M).
This zero sequence is identical with L (mod L*), where L{ is the integer for which
L¥=1L, (mod L¥), 0<Lf<L*

The roots of unity which are the elements of X lie in the algebraic field K [®and this
field is at most of degree 2. On the other hand, there are only finitely many roots of
unity that are algebraic numbers at most of degree 2g. Denote by M, the least common
mult*mle of the orders of all these roots of unity. Then evidently

M®B <My for k=k,.
Since L* is a divisor of M®, this implies that also
0 LF<L*< M, for kx=k,.

14. On dropping now again the asterisk, the last result may be formulated as
follows:
If e = ky, then F®(z) possesses al least one zero sequence

L, (mod L), where 0<Ly<L<M,,

and where My is independent of k. Moreover, all Taylor coefficients [0 of F®(z) with
h= 1, (mod L) are zero.
There exist only finitely many zero sequences Ly (mod L) for which 0 < Ly < L < M,

the zero sequences ., . .
Ziy, Ly, Z

s I

say. Foreach k> k, denote by u = u® the smallest suffix such that Z, is a zero sequence
of F®(z). This function v = u® has only v possible values. Hence there is an infinite
sequence of indices

k = ky, ko, kg, ..., where ky<ky<k,<ks<...,
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for which » = «® assumes one and the same fixed value wu,. For all these indices
#(z) possesses the same zero sequence Z,, , or say 1§ (mod L?), and all Taylor coeffi
cients /$ with A= L9 (mod L°) are zero. However, as was proved in § 11,

lim [P = f, for all A.

k—>w
Therefore, on allowing & to run over the sequence ky, £y, ks, ... to infinity, it follows at
once that also .
’ fn=0 if A=L4 (modL®).

Hence the original function #(z) likewise admits the zero sequence LY (mod L°). This
proves the assertion.

15. Theorem 2 implies a slightly stronger result.
. ao
TuroreMm 3. Let F(z)y= 3 f,2"
h=0

be a rational function of z which is regular at z = 0 and has infinitely many vanishing
Taylor coefficients f,. Then a positive integer L and al most L non-negative integers

Ly Ly ooy Ly with Li#L, (modL) for j+k

exist such that f, vanishes exactly when
h=1L; (mod L), hz=L; (j=12,..1)
and for at most finitely many other values of h.

Proof. 1t may again be assumed that #'(z) is normed. Denote by M the same
positive integer as in Lemma 1. By this lemma, it suffices to consider those zero
sequences L; (mod L) of F(z) for which L is a divisor of M. As such sequences can be
subdivided into sequences (mod M), it further suffices to prove the theorem with L
replaced by M.

Denote by Ly, Ly, ..., Ly (mod M) all distinet residue classes h=L; (mod M) that
contain infinitely many suffixes £ for which f), = 0. The assertion is proved if it can be
shown that each L; (mod M) is a zero sequence of F(z). It will be enough to consider
Ly (mod H).

We assume thus that

[y = 0 for infinitely many k=1L, (modM).
Similarly as before, put

M—1
€=M fi(z) = 3 eliF(e7Tz);

j=0

further write L =2M

@ o
Then B (z) = Mz Yo hHA =M Y [ e = E(Q),

h=0 k=0

h=L,(mod M)
@

where B =M k}jofLﬁkM I

evidently is a rational function of £. This new function E({) is regular at { = 0, vanishes
at { = oo, and has infinitely many vanishing Taylor coefficients f7, . ;..
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Hence it follows from Theorem 2 that K({) possesses at least one zero sequence
k=, (modx).
As the function is normed, this implies that

Jrpoen =0 if k=k; (modk),
or, what is the same,
fu=0 if h=L +xM (modxM).

This relation means that the original function #'(z) has the zero sequence L, +x, M
(mod xM). But then, by Lemma 1, it also admits the larger zero sequence L, + ;M
(mod M), hence also the zero sequence L; (mod M). This concludes the proof.

16. It is well known that, for sufficiently large A, the Taylor coefficient f, of the
rational function #(z) has the explicit representation

fi= 5 p

where py(h), po(h),....p,(h) are polynomials in the variable % not identically zero,
while gy, f,, ..., 5, are distinct constants different from zero, viz. the reciprocals of the
poles of F(z). Conversely, every expression of this kind defines the Taylor coefficients
of a rational function regular at z = 0, and the same is true if % is replaced by — 4.
The following result is then implicit in Theorem 2.

TuroreM 4. Let fy, fs, ..., B, be finitely many complex numbers that are distinct,
different from zero, and such that no quotient of two of them is a root of unity. Also
let py(h), po(h), ... p,(h) be an equal number of polynomials not identically zero with
arbitrary complex coefficients. Then the equation

K2
X ) =0
v=1
has at most finitely many solutions in rational integers.

I'am very much indebted to my colleague, Dr P. Cohn, for reading the manuscript
and suggesting many improvements, and to the referee, Dr T. Estermann, for a great
simplification of the proof.
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