MATHEMATICS

ON A THEOREM BY E, BOMBIERI
BY

K. MAHLER

(Communicated by Prof. J. Porrex at the meeting of January 30, 1960)

A. BRAUER, in 1929 (Jber. D. Math. Ver. 38 (1929), 47), proved that
if o is a fixed algebraic number of degree m and B#x is a variable
algebraic number of degree n and height H(f), then

|ov—B| > O (),

where the constant '~ ¢ depends only on «. This result has recently
been greatly improved by E. BoMBiERT (Boll. Unione Mat. Ttal. (11T),
13 (1958), 351-354) who obtained the following theorem.

Let o and B be two distinet algebraic numbers which are not conjugates

of one another and are of degrees m and n and of heights H(x) and H (B,
respectively. Then

|ox —f> (4mn)*3m”H(oc)—”H(ﬁ)“m.

A study of Bombieri’s very elegant proof shows that itg restriction to
algebraic numbers is inessential and that it may be applied to the zeros

algebraic numbers, as special cases.

In the first theorem it is assumed that the resultant R(f, 9) of two
arbitrary polynomials / and g does not vanish. Then a lower bound for
the difference |x—pB| between any zero o of f and any zero p of g is
determined which depends only on R(f, g) and on the degrees and heights
of f and ¢. If these polynomials have integral coefficients and are
irreducible, one comes back to Bombieri’s theorem.

In the second theorem one assumes instead that the discriminant of
the arbitrary polynomial f is not zero. It is then possible to obtain a
lower bound for the difference |1 — 2| of any two two distinet zeros of f
that depends only on D(f) and the degree and the height of f. In the
Special case when / has integral coefficients and is irreducible, this
theorem establishes a lower bound for the difference of any two conjugate
algebraic numbers,
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1. If

- ' re ao# 0
agz™ - aiz™ 1+ ... +am,  where ag#0,

f(2)=
o : by
is an arbitrary polynomial with real or complex coefficients, denote by
is @ Tary
&(f)=m and H(f)=max (laol,|aal, - |cm])

its degree and its height, respectively. It is obvious that

W) o(pg) —m—k H(E2 <N (E=012.m)

Let now A be an arbitrary real or complex number satisfying
and let further

Naturally

Next, by Taylor’s formula.

(), | D)
fﬂz):f m! 2"+ (m—1)

aml4 . +f(4)

Here, by (1),

BNl

Further

(1 1) (1 ]+ AP oot A0 < ) H(- (mt 1) A
kldh

@)AFF< 3 (] AlE = (LA

i and therefore
* (At < (14] + 1)
| It follows therefore that

(2) H(f*)<(m+1)(| 4]+ 1)™H(f) if |4]>1

2, I;elllllla I. 1’ 8. . 1o, re (4 I[ or Cco plew (/) 8)678 the?e
1, y Xm a m rea m nuUMmM i

eaists a real or complex mumber A such that

1<]A\<Vm+l, min |x,—A|>1

1<p<sm

ce A=1.
When all numbers xi, ..., xm are real, we may take

i ircles
Proof: With the m+41 numbers 0, x1, ..., ¥m associate the circ

Co:lel<1, and O, : [z~ /<1 (p=1,2,...,m)

: union
in the z-plane. Each of thesc circles has the area s; the area of the
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of the m +1 circles hence does not exceed s(

m+1). On the other hand,
the circle

C:lzl<Vm=1
has exactly the area 7i(m+1). There is then at least one point 4 of ¢
which does not belong to any one of the circles Cy, O, vers Cpy. — The

assertion for real numbers X1, ..., &, 1S obvious.

3. Let
f(2) = @pz™ -+ ayzm-1 1 .—%—am:ao(z~rx1)(z—o<2)...(z~ocm) (a0 0),
g(z):boz” + bzl | + by =by (z—ﬂl)(z—[)’z)(z—ﬁn) (bo#—O)

be any two polynomials with real or com

plex coefficients which satisfy
the condition that their resultant

B(f.9) = ao" bom (=4

u=1 v=1
does not vanish. This assumption implies that the minimum distance

A(f,.9) = min |«,~p,|
I<um
I<vrm

between the zeros of the two polynomials is a positive number. Our aim
is to establish a lower bound for A(f, 9) in terms of

7). 8g), H(f), H(g), R(f, g).

Let A be the number of Lemma 1, thus satisfying

1<]A]<Vm+1, min |a,—A|>1.

Then put
[*(R)=f(z+4), g*( J=g(e+ )i, =0, — A, ,* =p,— A1 < p<m, l<v<n)
50 that

f*(z)=a0(z—zx1*)(z~o¢2*)...(z—zxm*),

(=) =bo(z—B1*)(2— B2*)...(z— Bu*)

Since &,  —B*=wa,—p, it is obvious that

(3) B(f*, 9*)=R(}, 9), A(f*, g*)=4(}, g

Further

(4) o, *] >1 (u=1,2, ..., m),

and by (2)

6)  H(f)<(m+1)(| 4]+ 1)mH(F), Hg*)<(n+1) (|4 + 1)nH(g).
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From now on we assume, without loss of generality, that
(6) A(f, 9) <1
and choose the notation such that
(7) Alf, g)=|oa—Br| =|on™ —fr*]-

The resultant may be written in the form
(8) R(f,9) = ao" TT 9%(,)-
p=1

Here, by (4),

9% (00, < H () (L o, | o B o o ¥ < (o D" |HG7),
whence, by the second inequality (5),
©) - gt < DR(A] + L mH ) (=12, M),

Replace now on the right-hand side of (8) all factors g*(x,*) except
the one with x=1 by this upper bound (9). It follows then that

(10) |B(f, 9)] <|ao|"lg" (5")] iilz {(n+1)2(| 4] + 1), *|"H(g)}-

4. An upper bound for the remaining factor g*(ca™) may be obtained
from the identity
x1*
dag*
(11) g*(0a%) = o)~ (Br) = | 2 de,
pu*
where the integration extends over the line segment L joining f1* to
x1*. Every point.on L is of the form
z=(1 —t)oci* —l—tﬂl* =x1* —t(oq* —ﬂl*)
where ¢ is a real number between 0 and 1. It follows then, on applying
the formulae (4), (6) and (7), that for all points on L,

] < fos®| + [or® — Br¥] < Joa®]| + 1 < 2"

Next, by (1) and (5),

H(%’—*)<nﬂ(g*)<n(n+ 1)(|4] + 1)H(g)-

Hence, when z runs over L,

99 (4 1)(| 4] + 1P (). (1+]220%] |22 [2007])

Here
1+ |200%] + 200 %24 o 4|20 P < (1424 224+ 2n-1) | ¥t <
: <2nl0¢1*|n7

and hence

dg*(2)
dz

(12)

<n(n+1)2%(| A| + 1)n|ay *|2H () if z e L.

The integral (11) implies the estimate
dg9*(2)

9% (01™) | < | Br* — 1 *| max -

z€L

Thus, finally, it follows from (7) and (12) that

(13) |97 ()] < A(f, g)-nn+1)20( A[ + 1)n|as* |2 H g).
5. Now substitute this upper bound in (10). We find that
|B(, )| < [ao|"A(f, g)n(n+ 1)22(| 4] + 1)n|ay*|nH (g).
: E {n+1)%([A]+ 1)n|o, *[nH (g)}

<]ao(x1*<x2*...o<m*f”(n+ 1)2m2n(| 4| + 1)ymn [ (g)m
. (| 4]+ 1)mnH (g)mA(f, g).

aoocr oo™, . .ot *

is the constant term of f*(2); i
. ; 1ts absolute val
the height of this polynomial, and hence velue does not then exceed

|@oos* oo™ .. .oom*| < H(f*) < (m+ )(|A]+1)ymH(f).
The last inequality therefore becomes
(14) [B(f, 9)l <exlt, 9)H(fynH (g)mA(f, g)
where we have put
f, g)=(m+ 1)(n-+ 1)2m2n(| 4] + 1)2mn,

It is convenient to repla
ce ¢ .
First, since m>1 and E‘ll > l,l(f’ 9) by a larger, but simpler expression.

20 (m 1)1, |A] +1<2(4],
and so ci(f, g) is not greater than the expression co(f, g) given by
ca(f, g)=(m+ 1)2n(n + 1)2m22mn'AlZmn_

When all the zeros of f(z) ar
e real, we may simpl t4=q
[4]=1, when ca(f, g) obtains the value Py put 4 =4 and hence

(m+1)2n(n L 1)2m22mn,

Excludin i ivi .

g this trivial choice, we ma W '
o ) y always take for A

satisfying |A4|<Vm+1, and then ca(f, g) becomes ' * mumber

< (m+1)%n(n 4 1)2m22mn(py - 1 ymn,
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Finally, we may always interchange the polynomials f(z) and g(z) in
our proof, which means that also m and n are interchanged. We obtain
therefore finally the following result.

Theorem 1. Let f(z) and g(z) be two polynomials with real or complex
coefficients, of degrees o(f)=m and 0(g)=n, of heights H(f) and H(g), and

with zeros &1, ..., &m and P, ..., Pns respectively. Asswme that the resultant
R(f, g) of the two polynomials does not vanish, and put
A(f,g) = min |x,—p,|
1<uscm
1<r<n

Finally, let
O(f, g) = (m+ 1)n(n= Lpmamne(f, gy

where c(f, g) is 1 when at least one of the two polynomaals has only real zeros,
and where otherwise c(f, g) denotes the smaller one of the two numbers m+1

and n+1. Then either

A(f, 9) =1

A(f, 9)= {C(f, H(f )"H (g)™} Y| B(f, 9)|-

Remark: When the two polynomials f(z) and g(z) have rational
integral coefficients, R(f, g) becomes an integer distinct from zero, and so
|R(f, 9)| > 1. Theorem 1 becomes therefore now the theorem of E. Bombieri.

6. Theorem 1 has an analogue involving the zeros «i, ..., am of the
single polynomial f(z) which, as before, may have any real or complex
coefficients. It will now be assumed that the discriminant

D(f) = (1/02m—'2 H (Ocﬂ_ (xv)z

I<pu<vrsm
of f(z) does not vanish; thus all the zeros of f(2) are distinct, and the

minimum distance

A(f) = min |x,—o,)
I<pu<vrsm

of these zeros is positive.
Our aim is to find a lower bound for A(f) in terms of

o(f), H(f), D(f)-

To do so, we shall essentially repeat the proof of Theorem 1, but now
the second polynomial

9(2)=1'(2)
will be identified with the derivative of the first, and we shall apply the
identity

(15) D(f) = (= 1ymm-D agnt TT f(x,):

u=1
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Let again 4 be chosen such that
I<|4|<Vm+T, min |o,—A4[>1.
1<pum

Further put

P@=1e+4), () =g+ 4)=f (2 + 4), x,* =a, — 4

» » (=1,2,...,m),
so that
f*(z):ao(z~a1*)(z~ocz*)...(z~ocm*), [x*>1 (u=1 m)
Since -
=8(g) =0 (Y) =
n=0g)=0(F) =m—1,  Hy) - H(%) <mH(f),

the inequalities (5) now take the form

H(F*) < (m+1) (4] + 1)ymH(f), Hg*) <m?(| 4|+ 1)ym=1H(f),
and hence the inequalities (9) change into

(16) ]g*(aﬂ*)!<m3(|A]+l)m—1[aﬂ*(m—1ﬂ(f) (v=1,2,...,m)
From the definition,

, % ok
()v‘u — K,

=&, —a, hence D(f*)=D(f), A(f*)=A4(f),
so that, by(15). also
(17) D(f) = (= jimem-n agn-1 TT g%(x,)
).
Hs=1
Replace here all factors g*(a. *

A 9% (x,*) except th i = i
upper bounds (16). It follows tile)n th;’cp ©one Wi =L by their
(18) [ D(f)] < [ao|™t|g*(aa*)| T (m3(| A+ 1ym=] o, * | m=LH(f)}

n=2 ‘

7 . .
From here onwards a slightly different method has to be used

The proof depends on a simple lemma due to C. L. Siegel

L 2: )
N C:;ilrlna 2: I'/et F(z) be a polynomial of degree M with arbitrary real
’ plex coe]ﬁczents, and let ¢ be a zero of F(z). If |¢[>1, and G
enotes the quotient polynomial F(2)/(z—¢), then 1) o “

H(G)< MH(F).
Proof: Let, in explicit form,

Fle)=Ao+ Azt ... +AuzM, G(z)=Bo+ Biz+... + By qzM-1

1
) The lemma holds without the restriction on 5

suffices for our purpose. but the weaker assertion




When |z| is sufficiently small,

and hence, identically,

G(z) = — <%+§E+ZC—Z+ ) ).

On multiplying out and comparing the coefficients of equal powers of
2 on both sides, we obtain the equations

Ao | A Au =0,1,..., M—1).
m—i+5;+...+ z (m

—~B,=
Since |1/¢] <1, these show immediately that
|B,| <(u+1)H(F) (u=0,1,..., M—1),

iving the assertion. .
: This lemma will now be applied to the polynomial f*(z). Put

hz) = ao(z —02*)(z—as*)... (2 —om™), k(2)=ao0(z —3™). (=™,

so that

hz) = f1@) k(z)

- H
z—oq*

By Lemma 2,
H(h)<mH(f*),
and a second application of this lemma gives

(19) H (k) <m(m — VH(f*)<m3(| 4| + 1)mH(f).

Consider now the factor g*(ca*) that was left in the formula
(18). On differentiating f*(z) and putting z=m", evidently
(20) g* (™) =ao(oa™ —oo®) (o * —ox3™).. (o™ —om™).

There is now no loss of generality in assuming that the zeros o, had
been numbered such that

A(f) = o1 —ove| = |2 * —ox2™].
The identity (20) implies then that
|g* (o) = A(F) | eloa ™))
and here, similarly as before,
[o(oer®)] < H)(L+ o[+ o * 2+ .. o *[72) < (m — D H () o[
Since |x1*|>1, we deduce then from (19) that

(21) |g* (oa*)| <A(f) . mA(|A[ + 1)mloa* | LH(f).
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We finally replace the factor |g*(«1*)| in (18) by this upper bound.
This leads to the inequality

D1 ool mi 4] 4 1) ot HO) TT (4] 102}, et 21y
el
and hence to the result
l])(/‘), < l(lﬂoé\'l*f\'z* .. _o(m*’m—lA (f )')77,377H1({A | - l)mz—mﬂH(f ym,
Here, just as in § 5,
|ooxs*ove™ oo *| < H(F*) < (m+ L)(|4|+1)mH(f),
so that
|])(f )’ <(m - 1)m—LmBm+1(!A! - 1)21n2—2m+1A (f VH (f)2m—1,
We can finally again distinguish between the general case when

[ .
|4|<Vm+1, and the special case when all zeros wy, ..., a,, are real so

that 4 may be taken to be i. With a slight simplification of the constant
we arrive at the following conclusion.

Theorem 2. Let f(z) be a polynomial with real or complex coefficients,
of degree 6(f)=m, of height H(f), and with zeros K1y eny O Assume that
the discriminant D(f) of f(z) does mot vanish, and put

Af)= min o, —a,).
Ipu<rim

Denote by I'(f) the constant
L(f) = (m+ Lyimdmey (f ym*

where y(f) is 1 when all zeros of f(z) are real, and otherwise v(f) has the
value m+1. Then

A ={LHH(f)zm=1371D(f)].

Remark: Assume again that f(z) has rational integral coefficients.
The discriminant D(f) is then an integer distinct from zero, hence
satisfies |D(f)|>1. It follows therefore now that

|1 —oxel > {I(F)H (f)2m-131,

where «; and «o are any two distinct zeros of f(z); i.e., &y and g are
algebraic conjugates. It follows then that Bombieri’s theorem remains

valid, even in a slightly strengthened form, when the algebraic numbers
are conjugate.
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