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A general property of arbitrary polynomials is proved, one form of which is as follows. Iff (z) 
has the zeros oi,, ..., a~m. and f'(z) has the zeros .1... fim-i' then 

m-1 m 
II max (1, Kl) H H max (1, Icaj). 

j=i j=i 

1. If f (z) = ao zm + a, zm-l +... + am 

is an arbitrary polynomial with real or complex coefficients, we write 
L(f) = laoI + Ial +IWa + +amI 

and call L(f ) the -length off (z). We further put 
1(f) = 0 if f (z) vanishes identically 

and otherwise define a positive number M(f ) by 

M(f) = exp(j log If (e27TW)f do) 

M(f ) will be called the measure of f (z). 
When f (z) reduces to a constant c, M(f ) becomes the absolute value IcI of this 

constant. If further g(z) is a second polynomial, 

M(fg) = M(f ) (g). (1) 

By means of Jensen's formula I have shown elsewhere (Mahler i960) that if f(z) 
has the exact degree m, the highest coefficient ao - 0, and the zeros x,, ..., ?Xm where, 
as always in this paper, each zero is written as often as its multiplicity, then 

m 
M(f) = laol II max (1, loal) (2) 

j=1 

and 2-mL(f) A; M(f) < L(f). (3) 

The aim of this paper is to prove a general property that connects the zeros of 
f (z) with those of its derivative f '(z). This property can be expressed in several 
equivalent forms which we now state as theorems. 

THEOREM 1. If f(z) has the exact degree m, then 

M(F') MMf). 
THEOREM 2. If f (z) has the zeros e,, ... m, and f '(z) has the zeros /, ..l., /m-j and 

and if p is any positive number, then 
m-1 m 

p 11 max (p,1/?!) II max(p,IcyI ). 
j=1 j[ 1 
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146 K. Mahler 
THEOREM 3. If oc,, ..., a.m are arbitrary complex numbers, then 

1 ?n 1 flog Z X27, d_. < log m. 

It is easy to see that each of these three theorems implies the other two. First, if the 
highest coefficient of f(z) is ao, that of f'(z) is mao where m is the degree off (z). 
Hence, by (2), theorem 1 and the case p = 1 of theorem 2 are equivalent. The 
general case of theorem 2 is now obtained on applying this special result to the 
polynomial f(pz). 

Secondly, the factorization 

f (z) = aO(z-a)...(z-&m), where ao - 0, 

off (z) implies that f(z) = E 

1 MYf') hence that jlog YZ 2f1i* d' = log 

Therefore theorems 1 and 3, and so also theorems 2 and 3, are likewise equivalent. 
It suffices then to prove theorem 1. This proof is indirect. It is based on a con- 

tinuity property of the measure 1(f ) which has' some interest in itself. 
2. This continuity property is -as follows. 
LEMMA 1. Let f (z) be a fixed polynomial, and let {fk(z)} be an infinite sequence of 

polynomials of bounded degrees such that 

lim L(fk-f )=0. (4) 
k-+>oo 

Then lim M(fk) = M(fA) 
k->oo 

Remark. In the hypothesis (4), the length L(fk -f ) may also be replaced by the 
measure "(fk -f ), as is obvious from (3). It would be interesting to decide whether 
the lemma remains valid when the restriction on the degrees of the polynomials 
fk(z) is omitted. 

Proof of lemma 1. The assertion follows immediately from (3) if the limit poly- 
nomial f(z) vanishes identically; let this trivial case be excluded. Without loss of 
generality, finitely many of the polynomials fk(z) may be omitted. Hence it may be 
assumed that the polynomials f(z) and fk(z) have the explicit form 

f (z) = aozm + a1zm-l +... +am = ao(z- a,)... (z- am), where ao * 0, 
and 

fk(Z) = akOZMk+aklZMkl +... +kmk = akO(Z -akl) ...((Z-akmk), where ako 1 0, 

and where m <1 mk < n for all 1 k. 

Here n is a certain constant. 
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The hypothesis (4) implies that 

lim fk(Z) = f(z) 
k->oo3 

uniformly in every bounded set in the complex z-plane. Hence, by a theorem due to 
Hurwitz (see, for example, Marden I949, p. 4) it is possible to number the zeros of the 
polynomialsfk(z) such that 

lim akj =oj j1, 2, ...,m), (5) 
k--coo 

but that the remaining zeros 
Xkm+l' 0km+2 . * *Xkmk 

tend to infinity with k for all those suffixes k for which the difference 

tk = mk - M 
is positive. 

Denote by K, and K', arbitrary infinite sequences of distinct suffixes k for which 
k= 0, or lIk> 0, respectively. 

First, let k tend to infinity over any sequence K. Then, by (4), 

lim akO = ao 
whence, by (5), 

m m 
M(fk) = akOl fJ max (1, Ilaky|) -> aol f max (1, ljac) = M(f). 

j=l j=1 

Secondly, assume that k tends to infinity over any sequence K'. For such suffixes 
the expression (- 1)lkaklIako 

is that elementary symmetric function of the zeros 

'4kD a k2~ (X a?kmk 
offk(z) in which every term 

kiais kl (1 1< '>1 < '>2 < ... < '1kl M k) 

is a product of tk factors. All the 1k factors of exactly one term 

amk?+l a-km+2 ... akMk 

of this symmetric function tend to infinity with k, while in the remaining terms at 
least one factor remains bounded. It follows that 

] akm+l LXkm+2 * **Ckmk I ad klklakO I- 

Now aklk is the coefficient of zm infk(z), and so,- by (4), 

aklk -? ao, 
m mn 

hence lim IaklkI Jmax (1, lakjl) = la01 IImax (1, jxj) =M(f) 
j=1 j=1 

mk mk 

Ontheotherhand, fl max(1,foIkj) = II jakj I 
J=m+ 1 j=M+ 1 

IO-2 



148 K. Mahler 

for all sufficiently large k because the factors tend to infinity. It follows thus, finally, 
that as keK' tends to infinity, 

M(fk) = lakOl II max(1, I akjl) = H akjIx jiakj __ max(1, I akjI1) 11M(f) 
j=1 aki,. j=m+l 

because the first factor on the right-hand side tends to -1 and the second factor to 
M(f ). The assertion is therefore true in either case and hence generally. 

3. The proof of theorem 1 is indirect. We shall assume that there exists at least one 
polynomial g(z), say of the exact degree m, such that 

MVy) > mM(g). (6) 

From this hypothesis, after a long and involved reasoning, we shall derive a 
contradiction. 

Let m be the smallest degree for which there exists a polynomial g(z) with the 
property (6); there is no difficulty in showing that 

m > 2. 

Denote by S the set of all polynomials f(z) t 0 at most of degree m, and for such 
polynomials put Q(f) = M(f')/M(f) 

Further let A= sup Q(f). (7) 
fES 

It is easily proved that m < A < 2 mm. (8) 

The left-hand inequality follows from the existence of g(z). Next, it is obvious that 

L(f') < WmL(f) if f(z) ES. 
Therefore, by (3), 

M(f') < L(f') m<,nL(f) < 2mmM(f), hence Q(f) < 2mm if f(z) E S, 

giving the right-hand- inequality (8). 
If c is any constant, 

L(cf) = Ic L(f) and Q(cf) = Q(f). 

Therefore, in the definition (7) of A, the least upper bound- need only be extended 
over those polynomials f(z) in S which are normed by 

L(f)= 1. 

Since A is bounded, it follows then finally that there exists an infinite sequence of 
polynomials X= {fk(Z)} 
in S with the properties 

lim Q(fk) = A and L(fk) = 1 for all . (9) 
k-ayo 

4. Each polynomial fk(z) in X may be written explicitly as 

fk(Z) akOZ +aklzM 1+ ... +akm, 

where L(fk) = IakOI+Iakjl +l.. + I akmI = 1. 
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We represent this polynomial by the point (ako, akl, ..., akm) in complex (m + 1)- 
dimensional space; then all these points are bounded. By Weierstrass's theorem it 
is thus possible to select an infinite subsequence of 2, 

' = {fk,(z)} say, where k1 < k2 < k3 < ... 

such that the polynomials fk,(z) in 2' converge to a certain limit polynomial 

fJ(Z) = a00zm + a01Zm-1 + ..+ am 
in the sense that lim L(fkz-fo) = 0. (10) 

loo 

This formula is equivalent to the m + 1 limit relations 

lim aklj =ao (j = 0, 1,.. .,m e) 
1 -+00 

for the coefficients. In particular, 

L(fo)= limL(fkl)= 1, 
1 -+00 

which means that fo(z) is not identically zero. It is also evident that 

lim L(fkl,-f') = 0 (11) 

because L(fjk--f ) < mL(fkl-fO) (1 = 1, 2, 3, ...). 
5. Finitely many terms of the sequence 2' may always be omitted. There is then 

no loss of generality, by (8) and (9), in assuming that 

n <, Q (fkl) < A (1=1, 2,3,...) 
Also, by (3) and the second formula (9), 

2-mA K"(fkl) < (1=1 ,,.) 
whence further 

2-mm < M(fk') - M(fkl)Q(fkl) < A (1=1,2,3,...). 

These inequalities show that both sequences of real numbers 

{M(fk,)} and {M(fk,)} 

have finite positive lower and upper bounds. Hence Weierstrass's theorem allows to 
select in 2' an infinite subsequence 

22" = {fk(z)(z)}, where k' < P" < k"' < 

such that both limits lim M(fk(l)) and lim M(fk'() 

exist and are positive and finite. The polynomials in Z" still satisfy the relations (10) 
and (11). Hence lemma 1 implies that 

M(fo) = lim M(fk(z)) and M(fo)= lim M(fkq)), 
l-on 1??00 

and that therefore 

-Q(fo) = M(f )/M(fo) = lim M(fk(l))IM(fk(l)) = lim Q(fk(l)) = lim Q(fk) = A > im. 
l -* l -*00 k-han 
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The polynomial g(z) _ fo(z) possesses thus the property (6) and so, by the definition 

of m, has the exact degree m. Its highest coefficient a00 is therefore distinct from zero. 
Put F(z) = a6-lgf(z) 

so that F(z) has the exact degree m and the highest coefficient 1. By the homogeneity 
of ~f ), Q(F) = Q(fo) = A. 

It follows therefore the basic inequality, 

Q(f) < Q(F) for all polynomial8f (z) in S. (12) 

6. The polynomial F(z) and its derivative may be factorized in the form 

F(z) = (z-A A,)... (z-Am), 
F'(z) = m (z-B1) ... (z-Bm-1); 

here the zeros A1 and By need not all be distinct, and some of them may vanish. The 
notation may be chosen such that, say, 

-A11 > 1 if 1 < j < Ar = O if r+I < jA r+s, 
o < IAjI < 1 if r+8+IKjm < M; (13) 

lB1l>I if IKj R, IB I I if R+IKjKm-1. (14) 
Then M(F) = IAIA2 ... Ar| and M(F') = m IBB2 ... BRI, 

so that Q(F) = m B1B2 sBR = A > m (15) AIA2..,.Ar 
From this formula it follows in particular that 

R> 1 

because otherwise Q(F) < n. But this implies that also 

r ) 1. 

For when r = 0, all zeros of F(z) lie inside or on the unit circle. -By the theorem of 
Lucas (see, for example, Marden I949, p. 14), the same is then true for the zeros of 
F'(z). Hence R = 0, against what has just been proved. 

7. Denote now by Z1, Z2 ** ,. Zr+s 

r + 8 independent complex variables, and put 
r+S 

f(z) = g(z)h(z), where g(z) = fI (z-Zj) and h(z) = I (z-A1). (16) 
j=1 j=r+s+l 

This polynomial f(z) has again the degree m and the highest coefficient 1, and it 
coincides with F(z) if 

Z1=Ai when 1 <j < r+s. 
Its derivative allows the factorization 

Mr- 
f'(z) = m I (z- W), (17) 

j=1 
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where W1, W2, ..., J'4 are the branches of the algebraic function 

W(Z) = W(Z1 Z2, ,**,Zr+s) 

of (Z) = (Z1, Z2, ..., Zr+s) defined by 
f'(W) = O. 

By Hurwitz's theorem, there exists a neighbourhood 
U: 1Zg-All < 81 Z2-A21 < ' *... IZr+s-Ar+sl < 8 

of the point (A) = (Al, A2, ..., Ar+s) such that the following relations hold when the 
point (Z) lies in this neighbourhood, 
(A): W1, W2, ..., Wm- are continuous functions of (Z); 
(B): ZjI > 1 if 1 j < r and 4Z1 < 1 if r+l j < r+s; 

(C): IjJf>1 if 1(j<R; 
(D): W1I= B1, W2= B2, *.., Wm-, = Bm-1 if Z1 = A1, Z2= A2, ..., Zr+s = Ar+s, 
It is quite possible that for some points (Z) in U also one or more of the numbers 
I WR+lI, I WR+2I, * .., | Wm-l| are greater than 1. 

Independent of whether such points (Z) exist or not, it is obvious that 
M(f) = IZ1Z2 ... ZrI and M(f') > m IWIW2 ... WRI 

hence that Q(f) > z 2 ...z 

On combining this inequality with the formulae (12) and (15), we find that 
WI W2 ... WR < B1B2... BR if (Z) E U (18) 
ZiZ2 ... Zr AIA2.-. Ar i ZE.(8 

8. Put now X(Z) = X(Z1, Z2, Zr+s)A= Z172 * * rW 

By the assumptions (A) - (D), X(Z) is a continuous branch of an algebraic function 
of (Z) when (Z) lies in U. Also 

X(A) = X(A1, A2,..., Ar s)BB2*BR 
r~)=AjA2 ... A' 

so that, by (18), IX(Z)j < JX(A)j if (Z) e U. (19) 
Assume, for the moment, that X(Z) is not a constant. There are then r + s constants 

IA' fl2 ** fl tr+s satisfying .. s 
yl < 5 for 1 sj A r+s 

such that X(A1 + /1, A2+f2, ... ) Ar+s + flr+s) X(A1) A2 ... Ar+s). 

The function x(t) = X(A1+fltA2 +/32t, * ,Ar+s +3r+st) 
of the single complex variable t is then likewise not a constant. The point 

(A +/t) = (A1 +fljtA2+f2t,* ..., Ars +8r+St) 
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lies in U when t belongs to the circle 
Jtj <1. 

For such t, x(t) is a non-constant continuous branch of an algebraic function of t 
which at the point t = 0 assumes the value 

x(O) = X(A). 

The point t = 0 may be a regular point or a branch point of x(t); in either case there 
is a positive integer N such that x(uN) is regular and non-constant in a certain small 
circle V: ufj ? C, 

where 0 < e < 1. By the maximum principle for regular analytic functions, this 
implies that jx(O)j < max IX(UN)1. 

ueV 

Thus there exists a complex number to satisfying 

Itol < 1, jx(tO)j > Ix(O)l = IX(A)I. 
But then the point (A + to0l) lies in U, and 

IX(A+tofl) > IX(A)j, 
contrary to (19). 

This contradiction proves that our assumption was false and that 

X(Z) is a constant. 

This property holds, in the first instance, when (Z) lies in U; but if X(Z) is defined 
on its Riemann manifold by analytic continuation, then it remains always true. 
Hence a constant C exists such, that 

W1W2... WR = CZ1Z2 .Z identically in Z.,Z2, ..., Zr-.s (20) 

9. We now replace the r + s variables Z1, Z2 ..., Zr+s by a single independent 
variable Z by defining Z1, Z2, ..., Zr as the roots of the equation 

k(z)=O, where k(z)=zr+zr-l+zr-2+...+Z+Z (21) 
and by putting Zr+1=Zr+2= = Zr+S= 

Then f(z) becomes the polynomial 

f(z) = k(z) 1(z), 

where 1(z) = (z-l)sh(z) = (z-l)s IS (z-A ). 
j=r+s+1 

Here it is obvious, from (13), that 
1(0) * 0. (22) 

From its definition, f (z) has the exact degree m and the highest coefficient 1; all 
the other coefficients are linear polynomials in Z. It follows that its derivative f'(z) 
has the highest coefficient m while all its other coefficients are again linear poly- 
nomials in Z. 
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The lowest coefficient off'(z) has the value f'(0) and can be obtained as follows. 

On putting z = 0 in f'(z) = k'(z) 1(z) + k(z) I'(z) 

and using k(O) = Z, k'(0) = 1, 
we find that f'(0) 1(0) + 1'(0) Z. (23) 

10. The proof of the theorem can now be concluded as follows. 
Since Z1, Z2, . .Zr are the zeros of k(z), evidently 

ZiZ2 . -Zr = (-)rZ. (24) 

Similarly, W1, W2, ..., .'Il are the zeros off '(z) which has the highest coefficient m and 
the lowest coefficient (23); therefore also 

WI W2 .. = (1(0) +l1 (0)Z). (25) 

From the form of the equation f '(z) = 0, its roots W1, W2, ..., Wm-1 are continuous 
functions of Z. Let now Z tend to zero. It follows then from (20) and (24) that 

limWlW2...WR= 0 
z-oo 

and hence also that lim W1 W2 ... **Wm1 = 0. 

On the other hand, from (25), 
(- 1)m-1 lim W.W2... Wm-1 =1(0) 

so that by (22) the limit is distinct from zero. 
This contradiction shows that the hypothesis at the beginning of the proof in ? 3 is 

false and so concludes the proof of theorem 1. 

11. A slight change of the proof just given enables us also to decide for which 
polynomials f(z) of exact degree m we may have 

W(f1) = mM(f). 

This equation certainly holds when the absolute values of all the zeros off (z) and 
hence, by Lucas's theorem, also those of all the zeros off'(z), are at most equal to 1. 
For in this special case 1(f ) and M(f ') become simply the absolute values of the 
highest coefficients of these two polynomials. 

This exceptional case is, however, the only one with equality. 
For assume there exists a polynomial F(z) of exact degree m which has at least one 

zero of absolute value greater than 1 and is such that 

M(Y') = mM(F). 
Then, in the notation of ? 6, 

Q(F) = m 12 A m A1A2... Ar 

and hence not only r > 1, but also R > 1. Further, by theorem 1, it is again true that 

Q(f ) < Q(F) for all polynomials f(z) in S. 
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But this means that the whole proof in ?? 6-10 can be repeated without any essential 
changes and again leads to a contradiction. 

By the equivalence of the three theorems it therefore also follows that equality 
holds in theorem 2 if and only if none of the numbers I *j I and 1lj I exceeds p; and that 
it holds in theorem 3 if and only if all the numbers Ija, are at most 1. Thus, in 
particular, 

|lm 1 2 i 9f=logm if |Jc I <1 for 1 < jm, fog E 3d<lo 
1= yule27r-axe. < logm otherwise. 

12. The method of this paper is rather general and possibly may have applications 
to other extremal problems. It is also probable that theorem 1 may have applica- 
tions, e.g. in the theory of entire functions. 

There are other problems on M(f ) that seem worthy of study. Two of these are of 
particular interest because they would have applications in the theory of Dio- 
phantine approximations. 

(I) For given m, to find, the best possible constant cm such that, iff (z) and ,g(z) are 
any two polynomials at most of degree m, then 

MVf + 9) < cm(M(f ) + M(g))- 

(II) For given m and n, to find the best possible constant 0mm such that, if 
f1(z), ... ,f.(z) are any n polynomials at most of degree m, then 

n n n 

E E MVA fk) <, Cmn E M(fh). 
h=1 k=l h=1 

From the inequality (3) it is easy to deduce that 
cm ? 2m, Cmn < 2m(n-1), 

but these estimates are nearly certainly too large. It seems probable that in both 
cases the extrema are again attained when all the polynomials have only zeros of 
absolute values not exceeding 1. 

I finally thank my colleague A. Stone for reading the manuscript and suggesting 
many improvements. 

Postscript (29 April 1961) 
The referee for the Royal Society has made the following important remark 

about my paper: 
'The integral in theorem 3 is continuous for all values of each a and subharmonic 

in each individual a provided a does not lie on the boundary of the unit circle. 
Hence it suffices to prove the theorem if each a does lie on the boundary of the unit 
circle. But then the formula is obvious by the equivalence of theorems 2 and 3.' 

There is thus a simpler approach to the-results of my paper. However, the method 
I am using has interest in itself, and I have now succeeded in applying it to several 
other problems on polynomials. 
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