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Introduction

This paper is concerned with certain extremum properties of the measure
M(f) of an arbitrary polynomial

f(x) aox -k al x
m-I + + am

with real or complex coefficients.
In the theory of Diophantine approximations, and in particular in that

of transcendental numbers, it hs been customary to express the size of such
u polynomial either by its height

H(f) max( a0 ], laX l, "’", am I),
or by its length

i(f) ]a0[ + lal / ..-/ laml.
Here the length has the advantage of being pseudo-valuation:

(1) L(fg) -<_ L(f)L(g), L(f =V g) <= L(f) -}-L(g).

There is still another function of the coefficients which is worth considering
on account of its simple multiplictive property. This is the measure M(f)
of f(x) which is defined by

M(f) 0 if f(x) - O,

exp logIf(e’it) Id otherwise.

Thus, for any two polynomials,

(3) M(fg) M(/)M(g).

If f(x) has the exact degree m and the zeros a, a, then

(4) M(f) a0 II= max(l, a. I),

as follows at once from Jensen’s formula (see e.g. [2]).
The height, the length, and the measure of f(x) are connected by the

inequalities

(5)
([’)-H(f) _-< M(f) <__ H(f)x/(m + 1),

2-L(f) -< M(f) =< L (f)

for proofs see e.g. Mahler [2], [4], or G. P61ya and G. Szeg5 [7, p. 265]. As
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the example f(x) (x + 1)m shows, the left-hand sides of these two in-
equalities cannot be improved; and the same is true for the right-hand side
of the second inequality as the example f(x) x shows. On the other hand,
the right-hand side of the first inequality can always be improved when
m_>l.

We shall therefore be concerned in the first chapter of this paper with the
upper bound

c sup M(f)/H(f)
extended over all polynomials f(x) # 0 at most of degree m, and we shall
study certain polynomials for which this upper bound is attained.
The exact evaluation of c seems to be quite difficult. In the lowest cases

co= , c1= , c= +
and it is clear that c is a nondecreasing function of n.
above, c is always finite, viz.

From the inequality

c -_< v/(m + 1).

In the opposite direction, a result by J. Clunie [1] implies that

Cn >= A/(m + 1),

where A is a positive absolute constant. In some unpublished work, by
means of an entirely different method, C. B. Haselgrove has shown that
lim inf (Cn//(m + 1) => e-/4 where , is Euler’s constant.
The main result of the first chapter may be expressed as follows.

THEOREM 1. For every degree m there exists a polynomial

F(x) Aox + Al x- + Am
such that M(F)/H(F) c, and that moreover

[A01 IAll lAin H(F)= 1.

One may conjecture that, in fact, F(x) can be chosen as a real polynomial
so that all its coefficients are equal to + 1 or -1; however, I have not suc-
ceeded in proving this.
By (3), the measure M(f) has a much simpler multiplicative behaviour

than L(f). To make up for this, its behaviour under addition is less simple
and will be studied in the second chapter.
From the second formulae in (1) and (5), it follows that

M(f = g) <- L(f g) <- L(f) + L(g) <= 2{M(f) + M(g)}

Added in proof. This conjecture has been disproved numerically by Mr. Michael
Comenetz and Mr. Stephen Grant, students in the 1963 Undergraduate Summer Pro-
gram of the University of Illinois Digital Computer Laboratory. They used Illiac II
to study the cases m 6, 7, 8 and found that the coniecture is false in each of these
cases. The conjecture appears to be true for m =< 5.
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if both f(x) and g(x) are at most of degree m. More generally, let
fl(x),..., f,(x) be finitely many polynomials of degrees not exceeding m.
By the same kind of computation, we find now that

2hn_--I 2kn=l M(2) fk) --< hn=l kl L(fl fk)

=< ’’_-, ’_-1 [L(A) -+-L(fk)} --_< 2(n- 1)h= L(f)
hk

=< 2+(n- 1)= M(f).

Hence the upper bound

C. sup (En_-x ’n=l M(fh --f))/(Ehn=.l M(fh))
extended over all sets of n polynomials, all at most of degree m, is finite
and not greater than 2m+l (n 1).
We shall again study systems of such n polynomials for which the upper

bound is attained, and our main result may be expressed as follows.

THEOREM 2. For every degree m and for every positive integer n, there exist
n polynomials F(x), Fn(x) which are not all identically zero, with the
following properties:

(a) (Ehn__i Ekn_-IM(F F))/(=I i(Fh)) Cmn
(b) Those of the polynomials F(x), Fn(x) that are not identically

zero, all have the exact degree m, and their zeros lie on the unit circle.

I conjecture that, in fact, none of the extremum polynomials
F1 (X), F. (x) can be identically zero.
Again it does not seem to be easy to find the exact value of C for arbitrary

m and n. One can, however, use Theorem 2 to replace the trivial upper
estimate 2m+i(n 1) for C by a better one, and it is also easy to establish
a nontrivial lower estimate.

Chapter I. The ratio M(f)/H(f)
1. If f(x) is any polynomial not identically zero, put

P (f) M(f)/H(;)

so that P(f) is a positive number. If c # 0 is a constant, evidently

H(cf) c H(J’) and M(cf) c M(f),
and hence

P(cf) P(f).

Thus, for the study of P(f) it suffices to consider polynomials of height

H(f) 1.

From now on let S, be the set of all polynomials at most of degree m and
of height 1. The quantity of the introduction,
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(6) cm sup M(f)/H(f) sup P (f),

where the upper bound extends over all polynomials f(x) 0 at most of
degree m, may therefore also be defined by

(7) Cm sups(x)Sm M(f).

2. From this definition of c,, there exists an infinite sequence of poly-
nomials,

l(x)},

all at most of degree m, such that

(8) H(fk) 1 for all It, and limk_(R) M(f) cm.

Now the polynomials at most of degree m and of height 1 form a compact
set. It follows then from Weierstrass’s theorem that there exists aa infinite
subsequence

’= y(x)} ( < < < ...)

of Z which tends to a limit polynomial

in the sense that
limo H(f,- G) O.

Also the polynomial G(x) has at most the degree m, and furthermore

H(G) limr H(,) lim H(f) 1.

In addition, by Lemma 1 of my paper [3], G(x) has the measure

M(G) limo M(f) limo M(f) c.

It is quite possible that G(x) is of lower degree than m, say of the exact
degree m n where 0 n m. Then the new polynomial

F(x) xnG(x)

has the exact degree m, and it is obvious that

H(F) H(G) 1, M(F) M(G) c.

We have thus obtained a result which we may express as follows.

LEMMA 1. There exists at least one polynomial F(x) of the exact degree m
such that

(9) H(F) 1, M(F) c,

and that moreover

(10) M(f) M(F) for every polynomial f(x) in S.
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3. From now on denote by the set of all polynomials

F(x) Aox - A1 -- -- Am (Ao O)

of exact degree m with the properties (9) and (10); by Lemma 1, this set
is not empty. Our aim is to prove Theorem 1 of the Introduction which,
in the new notation, may be formulated as follows.

THEOnEM 1. The set contains at least one polynomial F(x) such that

A0[ JAil Am] 1.

The proof of this theorem is indirect. It will be assumed that, on the con-
trary, every polynomial F(x) in possesses at least one coecient A of absolute
value distinct from 1 and hence satisfying

(11) A I< 1.

From now on let F(x) be a fixed polynomial in with the following two
properties.

F x has the smallest possible number of coecients of absolute value
less than 1.

(b) The sux lc is the largest one for which (11) is satisfied.
Evidently the theorem will be proved if we can show that there exists in
still a further polynomial

f(x) aox + a,x- + + a
such that

a A if h ]c and 0 h m, but ]a] 1.

For then we obtain contradiction to the minimum property (u) of F(x).

4. Let t} and e be positive constants which will be fixed later.
present let f(x) yet be any polynomial

f(x) aox -- alx
m- -- -- au

For the

which has the following m coefficients in common with F(x)"

ah Ah if h ]c and 0 -< h =< m,

while its remaining coefficient a is a complex variable which we restrict to
the neighbourhood

U: ]a.--A[ <
of A.
Denote by A1, Am the zeros of F(x), and by al, am those of

f(x). We number the zeros of F(x) so that, say

JAil> 1 if 1 <=h<=M,
(2)

=< 1 if M-l._<h<=m;
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here M is a certain nonnegative integer depending on F(x). This notation
implies in particular that

(13) M(F) Ao A1... A Cry.

Let e be chosen so small that, in particular,

(14) 2" < min<<M (l A I-- 1),
and also assume that

In the case when O, since by hypothesis A0 does not vanish, it follows
that also a0 is distinct from zero because

Hence, by Hurwitz’s theorem on the zeros of a polynomial (see e.g. arden
[5, p. 4]), provided is smller thu a certain positive function of v, the
zeros of f(x) can be numbered so that

(15) < (h , 2,.-., ).

Thus, from (12) and (14),

a[> [A,,[-- e> (1 +2e) e= 1 +e if 1 h M,
(6)

< A+e l+e if M+Ih m.

It follows then that

(17) M(y) ao a aM l,

where the sign of equality need not necessarily hold.

5. The m zeros al,..., a, of f(x) are the branches of the algebraic
function

a a(a)
of a defined by the equation

f() o.
Let now the coefficient ak vary arbitrarily in U. Then these m branches

may be interchanged; but it follows immediately from the inequalities (16)
that the first M branches a, aM can be permuted only amongst them-
selves. Hence the product

II(a0) a0..-

is a single-valued branch of a certain algebraic function of ak when this vari-
able is restricted to U. It follows again from Hurwitz’s theorem that II(a)
is continuous and hence also regular for all a in U.

Evidently,
II(A) A0 A’.. A.
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Therefore, from the property (10) of F(x) and from the formulae (13) and
(17), we deduce that

H(ak)l =< H(A)[ if eke U.

This surprising inequality shows that the absolute value of the regular
function II(ak) assumes its maximum in U at the centre ak Ak. But
then, by the maximum modulus principle for regular functions,

H ak must be a constant.

The proof assumes that ak lies in U; but the assertionremains valid for
all complex ak provided we define II(alc) outside U by analytic continuation.
In this way we are led to the following result.

LEMMA 2. If ak is an arbitrary complex number, then f(x) has M zeros

a a such that
ao a’" aM Ao A." AM.

In the exceptional case M 0 this equation simplifies to

a0 A0.

6. The proof of Theorem 1 may now be concluded as follows.
Choose for ak an arbitrary complex number of absolute value 1. By the

property (10) of F(x),
M(f) <= M(F) c,.

On the other hand, Lemma 2 implies that

aoa:"" a{ Ao A:... A{ M(F),

nd hence that
M(f) M(F) c.

However, f(x) hs one coefficient less thn F(x) that hs bsolute vMue
smMler thn 1, nd so contradiction to the minimum property () of F(x)
in 3 rises. This concludes the proof of Theorem 1.

Referee’s remark

Theorem 1 is directly implied by the following simple proposition, s we
readily see if we tke

A (z) f(z) a z-k nd B(z) z,
wheref(z) ao z + + a

PROPOSITION. Suppose A(z) and B(z) are nctions regular in some do-
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main containing the unit circle and not both identically zero. Let

F(w) fo log A (e2t) -- wB(e2t) dt

for any complex w. Then

suplw,=<l F(w) sUplwl=l F(w),

and the supremum is attained.

Proof. The function F(w) is subharmonic, and the proposition is a direct
application of the maximum principle for subharmonic functions. (See,
for example, MAVtCE HEINS, Selected Topics in the Classical Theory of Func-
tions of a Complex Variable, New York, 1962, p. 75.) To prove that F is
subharmonic we must show (i) that - _-< F(w) < + for all w, (ii)
that F(w) is not identically in any open set, (iii) that F(w) is upper
semicontinuous, and (iv) that for any positive r and any complex w we have

F(w) <- fo F(w +re2iu) du.

Assertions (i) and (ii) are immediate. In fct F(w) can be for at
most one value of w. Assertion (iii) follows from the fact that F(w) is the
decreasing limit of the sequence of continuous functions

F(w) f0 max n, log A (e2rit) 2v wB(e2rit) [} dt.

Finally, by Jensen’s theorem for the linear function, we have for each z on
the unit circle

f0 log[A(z) + (w + reU)B(z) du >- log lA(z) + wB(z);
2r iton putting z e and integrating over 0 =< =< 1, we obtain (iv). Thus

the proposition is proved. Obviously the regularity condition on A(z)
and B (z) could be weakened considerably.
One could give a direct proof of this proposition without using the notion

of a subhrmonic function, but the proof would essentially repeat the simple.
proof of the maximum principle for subharmonic functions. At any rate,
only the rudiments of the theory of subharmonic functions were used in the,

bove proof.
The above proposition also implies the following generalization of Theorem

1, as we readily see if we take

A (z) f(z) a z"- and B(z) A zm-.
THEOREM. Let Ao A An be given nonnegative real numbers, and let

f(x) ao x - al x
m-i 2V -- ant run over the set S of all polynomials of
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degree at most m with arbitrary real or complex coefficients such that

Then the maximum of M(f) is attained for a polynomial f(x) with

l 01 A0, [al A1, ..., lal A.

Chapter II. The ratio N(I)/M(f)
7. If f(x) is any polynomial not identically zero, we denote its exact

degree by the symbol t(f). Throughout this chapter m is a fixed nonnega-
rive integer, and apart from the polynomial 0 only polynomials satisfying the
inequality t(f) =< m will occur. If f(x) # 0 has the property (f) < m,
then we adopt the convention of ascribing to f(x) in addition to its (f)
finite zeros further m i(f) zeros . In this way all polynomials with
(f) _-< m have then exactly m zeros.

If f(x) # O, the symbol d(f) will be used to denote the number of those
zeros of f(x) (including possible zeros that do not have the absolute
value 1.
We shall be concerned with sets of n polynomials where n => 2, and for

convenience write such sets of polynomials as vectors

f(z) (:f(x), f(z) ),

which we call polynomial vectors. In particular, 0 (0,... 0) is the
zero vector, and f(x) is distinct from 0 when at least one of its components
fh (x) does not vanish identically.

For polynomial vectors we put

M(f) =1M(fh), N(f) _,= -’’= M(f, f.);

Q(f) N(f)/M(f) if f(x) # 0;

,i(f) max_<t<n.st,(x)o ti(fh); d(f) l.<_l=<n,s(x)o d(fi) if f(z) # 0.

If further a(x) is an arbitrary polynomial, we write

a(x)f(x) (a(x)f(x),
For such scalar products,

M(af) M(a)M(f) and
and hence

a(X)yn(X)).

N(af) M(a)N(f),

(18) Q(af) Q(f) if a(x) # O, f(x) # 0.

8. We shall mostly be concerned with a pair of polynomial vectors

f(x) (f(x), ,fn(X)) and F(x) (F(x), Fn(x))
and with the wo derived sets of polynomials

{gh(x)lh, j 1,2,-.. ,n} and {G.(x)[h,j 1,2,... ,n},
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where
g,,.(x) f,(x) f(x) and Gj(x) Fa(x) Fj(x).

Since for all suffixes h and j

g,(x) ----0 and g,,.(x) -g.,(x),

and similarly for Gj(x), both sets cannot contain more than (n n)/2
essentially distinct elements that do not vanish. It would suffice to consider
only the polynomials that correspond to pairs of suffixes (h, j) for which

l<=h<j<=n.

Some of the polynomials f(x), F(x), g(x), G(x) may vanish identically.
For the remaining polynomials we denote

by Ohl hm

by A, A,

by ,." ,
by

respectively.

the zeros of f(x) 0,

the zeros of F(x) 0,

the zerosof ghj(x) O, and

Bh.I, Bhm the zeros of Gi(x) O,

Some of these zeros may of course be equal to
A zero is said to be of the first, second, or third kind according as its absolute

value is greater than 1, less than 1, or equal to 1, respectively. The symbol
d(f) equals thus the total number of zeros of f(x) 0 that are of the first
or second kind. In addition to these, the polynomial has m d(f) zeros
of the third kind.
With any zero a of the first kind we consider also its reciprocal a-1; if

a , this reciprocal is put equal to 0.

9. The proof of Theorem 2 depends essentially on a generalisation of
the maximum modulus principle for regular functions. This principle may
be formulated as follows.

LEMMA 3. Let el(Z), l(Z) be finitely many functions of the complex
variable z which are regular in a closed region R. If zo is an interior point of
R, and if

E--I (Z)[ - E------i (Zo)I for all z in R,,

then all functions )I(Z), l(Z) are constants.

A proof of this lemma can be found in G. P61ya and G. Szeg6 [6, pp. 327-
328].

10. Denote by Stun the set of all polynomial vectors f(x) satisfying

f(x) - O, (f) _<_ m, M(f)-- 1.
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The least upper bound

sup N(I)/M(f) sup Q(I)

extended over all polynomial vectors f(x) 0 with 5(f) __< rn has already
been introduced in the Introduction, and it was then proved that

C,,,-<= 2’+1(n- 1).

The homogeneity property (18) of Q(I), applied with a constant a - 0,
shows that C,,n may also be defined as the least upper bound

Cmn sups(x),s, N(f).

By Lemma 1 of my paper [3], M(f) is a continuous function of the coefficients
of f(x). Hence, from their definitions, M(f) and N(f) are continuous func-
tions of the coefficients of the components of f(x). By the finiteness of
C,, and by Weierstrass’s theorem a proof similar to that in 2 leads then to
the following result.

LEMMA 4. There exists a polynomial vector

(x) (F(x), ..., F(x)
such that

(19) ti(F) m,

and that, moreover,

(20) N(f) =< N(F) C,,,,

M() , N()

for every polynomial vector f x in Sn,

The vector F(x) in this lemma is not in general unique since, e.g., its
components may always be permuted in any way. Denote then by q, the
set of all those polynomial vectors F(x) satisfying (19) of which the com-
portents have already been numbered in such a manner that

F(x) 0 if 1 =< h <- n(F),

-0 if n(F) -t- 1 =< h_-< n.

Here, by F(x) 0, n(F) is a certain integer depending on F(x) for which

1 _<= n(F) -< n.

11. From its definition, n(F) has only n possible values. Hence, as
F(x) runs over the elements of , n(F) attains a certain maximum, no => 1
say.

Similarly, the nonnegatve integer d(F) may be written as the sum

d(F) (=[)d(F,).

Therefore, by (F) _-< m and n(F) __< n, d(F) has not more than mn + 1
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possible values. Hence in the subset of those F(x) in which satisfy
n(F) no, d(F) assumes a certain minimum, do say.

Denote by the subset of all those F (x) in q, which satisfy both extremum
conditions

n(F) no and d(F) do.

Our aim is to prove Theorem 2 of the Introduction; in the new notation, it
may now be formulated as follows.

THEOREM 2. The minimum do is zero. Thus there exists a polynomial
vector F x in g of which the first no components all have the exact degree m and
possess only zeros of absolute value 1, while the remaining components vanish
identically.

Again the proof is indirect. It will be assumed that, on the contrary,

do->_ 1.

Then, starting from any element F(x) of ,I, we shall construct a polynomial
vector f (x) in with the property that

n(f) no, but d(f) < do.

Since this is contrary to the minimum definition of do, the assumption is
false, and hence the theorem is true.

12. Choose for F(x) an arbitrary, but once for all fixed, polynomial
vector in ,I,, so that

n(F) no and d(F) d0_-> 1.

The second formula implies that at least one of the integers d(F1), d(Fo)
is positive; denote by lc a suffix such that

d(F) => 1 and 1 _-< lc =< no.

It follows that the component F(x) of F(x) has at least one zero of the first
or second kind where this zero possibly is equal to .
Denote by

At Ae, Aq

the finite or infinite zeros of F(x) that are of the first kind; by

Ak, (q+ 1 <__ i <= r)

its zeros of the second kind, and by

Ak, (r + 1 i <= m)

its zeros of the third kind; here

d(F) r >= 1.
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In terms of these zeros, Fk(x) may be written as

(21) Fk(x) Ak Hql=i A-1 x- 1). II=q+l (x A).

Here empty products mean 1; A- x 1 becomes -1 when Ak ; and
the coeiticient AI is u constant which does not anish such that

(22) M(F) A .
For all factors A x 1 in the first product and all factors x A in the
second product have the measure 1, as follows immediately from (4).

3. Next denote by T the set of ll those pairs of suifixes (h, j) for which

1 5 h n, 1 5j 5 n, G(x) O.

Since C, obviously is positive, and since further

(23) N(F) (.)M(F- F) C,

T cannot be the null set.
In unlogy to the notation for F(x), denote for each pair (h, j) in T by

B, B Bhiu(h,)

the finite or infinite zeros of G(x) that are of the first kind, and by

B (u(h,j) + 1 i m)

its zeros of the second or third kind. Here u(h, j) is a certain integer which
may assume any one of the values 0, 1, m.

In analogy to F(x), G(x) may be written in the form

() a(x) B HrS’) (,5 x- 1). H:(.)+, (- ).
Aguin B-j x 1 becomes --1 when B,, ; and the coefficient B does
not vanish and is such that

(25) M(G) B .
The equation (23) is therefore equivalent to

(26) N(F) (,.) M(G) (,.,) B C

14. Let r be defined as in 12, and let R be the complex r-dimensional
space consisting of all points

Z (Z1, Zr)

with arbitrary complex coordinates zl Zr

Z’ (Z’I, "’", Zr)

If

is a second point in R, the distance z z’] of these two points is defined
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by the formul
!z z’l m__< ]- z I.

In prticulr, the point z has the distance

from the origin 0 (0, 0).
We shall consider the points in R also as vectors and apply to these vectors

the usual notation for the sum, difference, and scalar product.

15. Let Z (Z1, Zr) be the special point in R with the coordinates

Z A if 1 q,
(27)

A if q+ 1 r,

where A and q hve the sme meaning s in 12. Hence the formul (21)
for F(x) my now be written

(28) F(x) A= (Zx 1).=q+(x Z,).H,+(x Az).

From the definition of the zeros of F (x) it is obvious that

izl<.
Hence, if is any sufficiently small positive constant,

(29) z < 1 2.

From now on let z be an arbitrary point in the neighbourhood

(30)

of Z. We associate with this point z variable polynomial vector

f(x) ((x), y(x))
defined s ollows"

(a) Forl h n and h lc, let

y,(x) F,(x).

(b) In the remaining case h lc put

(31) y(x) A, [I= (z x 1)- H=+I ( z). H:r+l (X ),

or, what is equivalent to this,

() A H=I( -1, x 1).II=+ (x ).

Here, similar to (27),
z a if 1 q,

(32)
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while

(33) ak- Ak if r- 1 --< =< m.

Again the zeros a with 1 __< -< q are of the first kind, those
with q + 1 _<_ <__ r are of the second kind, and those with r + 1 _-< _-< m
are of the third kind. This follows immediately from (32) and (33) because,
by (29) and (30),

(34) Izl---I(z Z) + Z < ti + (1 2ti) 1 < 1.

]?tom the deiinition, f(x) F(x) when z Z. More generally, as z
tends to Z, thus when z Z tends to zero, all coefficients of the component
f(x) of f (x) tend to the corresponding coefficients ot the component F(x)
of F(x). Here f(x) has the exact degree m as long as z is a variable point
in U because AI 0, and hence, except at most for a subset of U of lower
dimension,

Akzl...Zq O.

16. Denote by T the subset of those pairs (h, j) in T for which both
h and j are distinct from k; by T the set of all pairs (h, k) and (tc, h) in T;
and finally by T** the set of all pairs (h, ]c) and (k, h) with h k that are
not in T. The polynomials

gh(x) j(x) f(x)

have already been introduced in 8. ]?rom the definitions, it is clear that

gh(x) G(x) if (h,j) eta;

g(x) --g(x) F(x) fk(x) if (h,/c) e T
g,(x) gh(x) F(x) f(x) if (h, It) e T*.

Thus, when (h, ]) lies in either T’ or T*, g(x) does not vanish identically
when z is a variable point in U, because then at least one coeffcient of f(x)
is variable since, by hypothesis, r d(Fk) 1. It is also evident that, for
the same pairs (h, ]c), the coecients of g(x) are continuous functions of z,
and that they converge to the corresponding coefficients of G(x) as z tends
to Z. In the limiting case when z Z, the polynomials g(x) become
identical with the corresponding polynomials G(x).

Since T is the union of T and T* and since trivially

M(gk) M(g) >_ 0 if (h, lc) eT
we find, in analogy to (26), that

N(f) >= (,.)r M(g,).

Further, by the inequality (20) of Lemm 4,

N(J’) <= N(F) if z e U.
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Hence, by (26),

Here the terms that correspond to the pairs (h, j) in Tc are the same on both
sides of the inequality and may therefore be omitted. Thus we arrive at the
basic inequality,

(35) -(.k)r M(gk) -< ’(.l)r M(ek) if z U.

In this inequality there is naturally no need to add also the contributions
from the pairs (k, h) in T’.

17. Written as polynomials in x, the components of F(x) and f(x) have
the form

X
m--1Fh(x) Ao + Aa x -t- + A, (h 1, 2, n)

and
f x aho x + ahl X

m-1 + + ah, h 1, 2, n

Here, trivially,
a A if h lc, 0 =< 1-_< m,

and the coefficients a are polynomials in the coordinates of z.
Let now (h, k) be any pair in T’ We obtain then for g(x) the explicit

formula

g,(x) Fh(x) f(x)
(36)

(Aho ako)X - (Ahl aki)xm-i - - (Ahm akm).

Since the coefficients a of fk(x) are polynomials in the coordinates of z,
the same is true of the coefficients of gh(x). The latter are then continuous
functions of z. Hence L(gh) and by Lemma 1 of [3] also M(gh) are like-
wise continuous functions of z. It follows that M(g) is bounded in every
bounded set of R, and that

(37) limz M(g) M(G).

From now on we distinguish the three cases,

(I) q => 1,

(II) q 0 and Ah0 A,
(III) q 0 and A0 Ak,

and we put for shortness,

c(z) Aho ao Ao A Zl Z2 Zq in case (I),
(38) A0-- a0 Ah0-- A in case (II),

Alex- 61

in case (III).
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Then ch(z) in none of these three cases can vanish identically in z. More
exactly, in cases (I) and (II), gh (x) has the highest term

c,(z)x

and is of exact degree m except when c(z) 0; and in the remaining case
(III) it has the highest term

c(z)x-
and is of exact degree m 1 excep gain when c (z) 0.

In this last case (III), g(x) has thus lways at least one zero , so that
the sme is true for G(x). Without loss of generality we may assume that
the zeros B of G(x) have been numbered so that

B for u(h,k).

Nturally also the remaining u(h, lc) 1 zeros of the first kind of G(x)
need not ll be finite.

s. (h, ) T, t

be all the zeros of g (x), and

B., B Bm

all those of G(x). Our notation in 13 was chosen so that B is of the
first kind if 1 u(h, ) nd is otherwise of the second or the third kind.
In other words,

B < 1 if 1 u(h,k),
(39)

B,] 1 if u(h,l) + 1 m.

By the first u(h, k) of these inequalities, positive constant can be found
so small that

(40) B-1 < 1 2 if (h,l)Tndl u(h,l).

Sice g(x) tends to G(x) as z Z, it is by Hurwitz’s theorem possible
to number the zeros z ot g(x) in such a manner that

(41)
2 if 1 u(h, )

aszZ.
[B if u(h,l) + 1 m

Provided then that the constant > 0 of 15 has already been chosen suffi-
ciently small, it follows that

< if 1 l u(h,)
(42) [ B-

where z V.

On combining the formulae (39), (40), and (42), we find in particular that
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-l < (1 2e) + e 1 e if 1 <= <__ u(h,t)
(43)

[k] < 1 q- e if u(h,k) q- 1 <= _< m

where z U.

Hence the first u(h, k) zeros of ghk(X) lie in the open set

and so are of the first kind, while its remaining zeros lie in the second open set

and so may, or may not, be of the first kind. It is important to note that
not only S and S but also their closures, are disjoint.

In case (III), we choose the notation so that

for u(h,k),

which is evidently permissible. The u(h, k) 1 further zeros

h, where 1 u(h,) 1,

are then finite whenever c(z) does not vanish.

19. Let (h, tc) be again an arbitrary pair in T* and let z be any point in
U. We associate with g(x) a certain function (z) of z which is defined
as follows.
Put

4)h(z) c(z) II(=l’k) in eases (I) and (II),
(4)

ch(z) II(=1’1)-1 in case (III).

As long as c (z) does not vanish, all factors h of 4(z) are finite, so that this
function has a good meaning. By Hurwitz’s theorem it is a continuous
function of z and hence can be defined by continuity in the points where
ch(z) O. From its definition, in all three cases

(45) M(gh) [0h(Z) [Hlm=u(h,k).-bl max(l, hlc I).
Here the factor

P(z) H(,)+I max(l, B I)

is never less than 1; hence

Further, in the limit as z Z, P(Z) 1, and hence

(47) (Z) M(Gk).

The m zeros h of g(x) are branches of algebraic functions of z. There-
fore they will in general be multivalued, so that, when z describes any closed
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curve r in U, they will suffer a certain permutation. We saw in 18 that
the first u(h, k) zeros hk lie in $1, and the remaining zeros in $2 ;moreover,
in case (III), the zero hu(h.k) has the constant value for all z. It follows
that, when z describes F, the factors h of 4(z) are permuted only amongst
themselves, and that therefore 4(z) remains unchanged. Hence, for z U,
41(z) is a single-valued branch of an algebraic function of z. Since this func-
tion is, moreover, continuous in U, it is regular in this region.
The basic inequality (35), together with the formulae (46) and (47),

imply that

From this inequality we can now deduce the important fact that, for all pairs
T*(h, k)

(49) z =- Z identically in z for z e U.

For let this assertion be false. Then there exist a pair (h*, k) in T and a
point z* in U such that

(0) ,.(*) ,,(Z).

Denote by -y a constant such that

Iz* Zl <= ’,

and by V the closed subset

of U; evidently z* lies in V.

The variable point

then lies in V because

V:lz-Zl<_

Next let be a complex variable for which

It[_<_l.

z Z+ t(z*-- Z)

Not all the functions of defined by

,(z) (z + t(z* z) ), (t) say,

are constants because, by (50),

(51) ,(0) t.(1).

The functions (t) are single-valued and regular in the circle [tl _-< 1.
(48), they satisfy the inequality

(.,);ln(t)l -< (a.);],(0)l if ]t I=< 1.

By

Lemma 3 therefore implies that all functions bh(t) are constants, contrary
to (51).
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This proves that all the functions h(z) are constants in V.
then also constants in U as we may allow to tend to

They are

20. The identities (49) have so far been proved only under the hypothesis
that z lies in U. Since, however, the functions h(z) are algebraic, these
identities remain true for all z if the functions are defined outside U by analytic
continuation.
The result so proved may be formulated as follows.

LEMMA 5. Let (h, to) be any pair in T and let z be an arbitrary point in
R. Then the polynomial ghk(X) has a set of u(h, k) zeros

(l=<=<u(h,c))

in cases (I) and (II), and a set of u(h, lc) 1 zeros, ( <= <= u(h,) )

in case (III), such that these zeros satisfy the identity

(z) ,(z).

In this lemma, the zero factors /hk, of h(Z) will in general no longer be
zeros of gk x of the first ]cind when z is a general point in R.

21. Theorem 2 can now easily be deduced from Lemma 5.
From the definition (38) of ch(z) it is possible to choose r real numbers

01, 0f such that the complex numbers

satisfy the inequality
Zl e01i Zr eOri

c(z) O.

Let f(x) be the polynomial vector that belongs to this choice of z, and for
this special vector let f(x) and g(x) be defined as before. Then, by (38),
all zeros of f(x) lie on the unit circle, thus are of the third kind, and hence

(52) d(f) 0 < d(F) r, d(f) < d(F).

From the definition of f (x),

Next, trivially,

(53)
and

(54)

M(f) M(F) 1.

M(g) M(G) if (h, j) e Tk

M(g) >=_ 0 M(Gh) if (h, lc) eT
Let, finally, (h, k) be any pair in T’ so that

i(ghk) Ch (Z) 1-I lm*l max 1, hkl I)
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here m* is equal to m in cases (I) and (II) and equal to m 1 in case (III).
In ease (III) the fixed zero hku(h,k) has been omitted as a factor from
the product on the right-hand side. By the definition of 4h (z) and by Lemma
5, this equation for M(ghk) implies immediately that

On adding all the equations and inequalities (53), (54), and (55), we find
that

N(f) _-> N(’).
By (20), this implies that

N(f) N(’).

Since f(x) is a polynomial vector in q) for which

n(f) no and g(f) < d0,

we obtain a contradiction with respect to the definition of do.
The hypothesis in 11 was therefore false, and Theorem 2 is true.
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