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ON A CLASS OF ENTIRE FUNCTIONS

By
K. MAHLER (Canberra, Australia)

(Presented by P. TURAN)

In his well-known book ,, Transzendentnye i algebraitcheskie tchisla”, Moskva
1952, pp. 175—181, A. O. GELFOND investigated in detail properties of functions

n—1my—1

E(z)= 2 2 A, ztens

v=0 pu=0
where the o, are distinct complex numbers, and the coefficients A,, are arbitrary
complex constants. In the present paper I continue his investigations a little

further and prove a general theorem which may have some interest in itself. In order
to make the paper self-contained, I have repeated some of Gelfond’s proofs.

1. Let oy, ,,...,2,_, be finitely many distinct complex numbers; let m,,
my, ..., m,_, be an equal number of positive integers; and let

n—1 n—1
0 = [[ Gy, m= 2 m,.
v= 0
Let further M and N be two integers satisfying
O=M=my—1, 0=N=n—1.

Dencte by /7 the integral
_ [ Emaydl

2ﬂic (=20
where C is a circle in the {-plane with centre (=0 and of so large a radius that it
contains the n+1 points oy, o, ..., %,_;, z in its interior. The integrand of [ is
a rational function of { which has at { =< a zero of order

m+l—M=m+1-—(my—1)=2.

The residue at { = <= is therefore equal to zero, and hence
(1) I=0 identically in z.
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2. Assume for the moment that z is distinct from o, o, ..., %,_;, and denote
by Cy, Cy, ..., C,_, C, circles of very small radii with centres at ag, oy, ..., %y _1, 2,
respectively. By Cauchy’s theorem,

Cn L [Ceadl L
) "éﬁéwﬂww’“éﬂwy

The integrals /, may be written in the form

1 [Cea @)
f (=201 (C—=aym if 0=v=m—1, v #N,

(L —oy)m~ dg .
) — . f = N.
L =420 ) €200 Toagm™ B
(g —ay)™ if v=n,

5552‘ 00 -z

n

where the first factors of the integrands are regular at the points {=o,, {=ay,
and { =z, respectively. Hence, by the residue theorem, these integrals have the ex-

plicit values,

et M e ML L Lt
e 2N = ML
{(%&?‘))};:: it v=n.
Therefore, on putting
Py — - 2O 00 LQ”“*{wwww}
M! MV(my—M—1)! {dC =00 Ji=an
and
mw>%?éﬁzﬁﬁiwinrdFﬁﬁﬁﬁwhg
it follows from (1) and (2) that
C

3) Pyx(z) = — g +pun(z) identically in z.
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From the explicit expressions it is easily seen that Pyn(z) and p,,y(z) are polynomials

in z at most of degree
n—1
m—1= 2> m,—1,
v=0

and that
n—1
PMN (Z) is lelSlble by ]] (Z— av)m\,’
v=0

v#N

pun(z) is divisible by (z — oty)™™.

Hence, from (3), it follows that
@ P,s;;v(a)={1 Lopman
v 0 if (u—M?*+(v—-N)?=0,0=pu=m—1,0=v=n—1.
In the trivial case n=1 we also see that N=0 and

_ M
Pro(2) = (iﬂf‘f)— if 0=M=my—1.

3. Since the degree of P, y(z) does not exceed m —1, this polynomial can be

written as
rn;I
Pyy(2) = 2/ Pz
i=o
Our next aim is to obtain upper bounds for these coefficients. This will be done

by first estimating upper bounds for |[Pn(2)].

Put, for shortness,
n—1
a= max (||, 1), a, = min Oy — o, |mvim,
0=v=n—1 C 0§N§n—1v]:]0 ooy = o
vEN

min  (Joy — o, v, 1)

42 = O=v=n-—-1
0=N=n-1
v#EN

in the trivial case n =1 these constants become,

a=max (|oo|, 1), a;=1, a,=1.
The definitions imply that

a=l=a,

and

n—1
I lay—ojm = ap, Joy—a)m~ =ay if N=v
v=0

v#EN
From the expression for Py y(z) in terms of Iy,
_ 0@ [C—ayMdl
Pun®) = 5zint1 | c=00©)
Cn
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We choose for Oy, tho el
_ L ol
ooy a2
4
ond conve now thot (ovos on Cy and that

lz] =2a.

ft .5 ~Lvious that Cy encloses none of the points o, where v = N. Nor does it enclose
ine point z because

m/mn

Y
[75) = 5 -—2 .

a |
z—{lz2a—~a= 5= =
: 2972 72
Next, if v=N,
o | 1 mimn 1 1
S~ Uyl = ?a = E[aN_av[a
hence
3 1 |
6 =%, = ‘(O(N—OC\')+(§waN)l = 5 \O(NA“(XV‘
whence
L e | -1 n—1 —my
| (L __O(N)my “w n i 1
e = I —a,[m = 5 loy — o = Qm-mngrm
o | v T vlz]() 2 '
v#N v#EN
Further
i o IV M—mn
l (‘a - x}\’)"l MmN | . l m/mn m mn—M+1 —m+(mM/my)
j——— l = 2 = das = 2 as .
g z—( 2
It follows therefore that
| -
D1 (C — O(N)M dS f _ I m/mn m=my _—m Amy—M+1 —m+(mM/mn) __
— |2 = gy 2 a;™-2 a; " =
2ni ) (z—0) Q) 2n
N

Next, since |z| =2a, and lx,|=a for all v,

n—1

0(2) = :]:]O a+ay~ = 3ay".

Hence the final result is that

. 3a m l — M 2 m
e = G- 2]

ada,
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whence, by M =0 and g, = 1,

. i ta L .
(5) |Pyniz| = B . iz = da
Layas
4. The Taylor coefiicicnts of 2,,{(z) wre given by

R

Py, = 2le Pun(G) d=z O0=1=m—1),

where the integration extends, say, over the circle

|z| =2a.

The estimate (5) implies therefore that

1 6a |" |
( } 5 = —— e 47T —_— e
[Py = 5 dna- {0102] (Qa)+

Since a=1, we find that

(6) PO = 2—l[a(’a] for all M, N, 1.

142

It is obvious that this formula remains valid in the trivial case when n=1.
For then

0 [All) (™™ (—ag)M !

Prio = M! T MM D)
so that, by M=my,—1<m,
[P = a1 = 2-1(6a)™ O=l=m—1).

5. The inequalities (6) will now be applied to the function

n—1my—1

E@) = 2 2 A,z'en
V=0 u=0
where the numbers m,, m, n, and «, have the same meaning as before, and where
the coeflicients A4,, are arbitrary complex numbers not all zero. Let
A= max |A4,|=0

O=pu=m,
O0=v=n

be the maximum of the absolute values of these coefficients.
Evidently,

o n—1my—1 l 1 141 d A Li
EV©0) = 2 Z AMA_J 5 = # =
A 1z=0

v=0 p=

S e S5 4]

v=0 pu= v=0 pu=0
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We multiply this equation by the coefficient Py of Py (z) and add over the values

of / from 0 to m—1. Then
n—1my—1 n—1my—1
(l) [ﬁ] Zl:‘ = 2 2 AuvPJ(\gI)V(av)’
iz= v=0 u=0

m—1
2 PINEC©) = 2 2 A,WZ
v pr=0

so that, by (4),
m—1
2, PAVED(0) = Ayy

1=0
Here the formula (6) implies that, for all suffixes M and N
m 6a m
5’ Pyl = [fﬁ] 27! = 2[ ]
IPainl = a,d; tzzo a,a;

O=M=my—1,0=N=n-1)

Hence it follows that
1 6a | ™"
1) = _
G | 1500 = 4[5
6. Let now By, S, ..., Bs—; be a second set of finitely many distinct complex
numbers, and let ry, 7, ..., ¥, be an equal number of positive integers. Then put
E= max [E9(B,);

0=0=s
O<Q<ra— 1

our aim will be to establish an upper bound for A in terms of E when the integer

r:ZYr(7

a=0

is sufficiently large.
For this purpose we introduce the following three constants in analogy to «, «,

and a,,
s—1
b= max (1), by = min [T 1B,
ag#S

O0=0=s—-

min_ (|Bs— B,|"s", 1).

b, =
2 O0=d=s-1
0=S=s—-1
S+#o

=1.

In the trivial case s=1 these constants have the values
b,=1, b,=

b =max (1B0l5 1)7

They always satisfy the inequalities
b=1=b,

and
s—1
1_70 Bs—Bo\= = by, |Bs—BJrs=by if S#o.
c#S
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7. If R is any positive number, put

M(R) = may |EQ).
Further let

denote the largest of the integers m,.
Assume that
®) R=3b=3.

An upper bound for M(R) follows easily from the definition of E(z). Evidently,

n—1
M(R) = D A(1+R+ ...+ Rm*~1)eaR,
v=0

Here
I+R+...+R™-1 = R'"*IZT3" < R™.
It follows therefore that, if R satisfies the inequality (8), then
) M(R) = nAR™ ek,
8. Denote by z any complex number of absolute value
(10) lz| =

This implies, in particular, that z has at least the distance b from each of the numbers

BO! ﬁl’ ceey ﬁs—l-

Denote by I' the circle
[=R

" E(Q)
‘2??:/ 1 ( 7= ﬁa] 7%

An upper bound for J is obtained in the following way.
If { lies on I', by (8) and (10),

| s—1 Z_‘Ba]ra _ s—1 2b+b ]r.7 9b]r E(C)
iﬂ[ :H[R—%R :[EE’ {—z

in the {-plane, and put

_ M®) _ 3M{R)

o=0 \ =B, =0 ~ R—%R R
Hence
_ 1 9 |" 3M(R) 9b
|J] = > 2nR- [ZR] R 3[2R] M(R),
whence, by (9), '
(11) | |J] = 3n4 9~b— rR"‘*e"R
= R .
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e residue theorem allows to express J in yet a second way. For0=8§=5 —1,
denote by [y the circle

1 rrg
Mt /}S\ -
and by I, the circle

I N N T By TEO s
(12) J = sz [[ [g—ﬁa] C_st, ~S;;Js say.
First, it is obvious that
, mrFm
(13) H[c 5] o= B

because the integrand has inside Fs only the simple pole { =z.
Secondly, let 0= S=s—1. By substituting for E£({) its Taylor series in powers
of {—pfs, Jg takes the form

SR
LR 250 em

Jg =
27(1
r

A

rs—1 s—1 ) o
S S opye EOB L [[ (L By re-((—Bs)e- ,s:ié_

0=0 0=0 Q! 27(1 4
I's o;tS

For all the integrals with ¢ =rg vanish because their integrands remain regular
inside I'y. By means of this representation, an upper bound for Iy may now be
obtained by a method similar to that in § 3.

Assume that { lies on the circle I'q. Then for all 6 S,

(sl =y b1 = 5 Bs—B,l.
hence
€= Bol = 1€~ Bo) +(Bs— Pl = 5 1Bs— fi

and therefore

| s—1 | s—1
N R Rl X
loss f ais

Further, by bzl =b, and by (10),

L L s 3 ‘ ,
= ;(g*/ﬁs)+ﬁs|§;§b2/ +b§—2—b, hence [(—z| = z|-[{| = = b.

o —
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It follows then that for all suffixes ¢ with 0=9=rg—1,
‘ ¢ | rir Y—rE -
d( 1 27rb Sortre, b2
—_ o . —_ - e S S 3 B o o Iz
H(g Bo)rm (L= Ps)e™ = 52 [20_ } .

15 aqt?

_1 « o/grlrsyo+1 s ’
T b (") [[)102]'

Further. by (10),

]7 Gpae = ] ﬁ (2b+ by~ = (3by.

Thus, by b, =1=5 and by the definition of F, we find that

rs—1 " - ‘
5 E o ﬁQ rirsyo+ 1 727 — 27¢ 6<b_]
For e (5 (256

u a:(‘) o!
ere
—%;L-:l/g< 2,
o=o 0!
so that
6b
(14) §J5{<2[b b'] E (S=0,1,....,s—1).

We finally substitute the explicit value of J, from (13) and the estimates for
J and J, from (11) and (14) in the identity (12). Since

s—1
E@) =J— 2 Js,
S=0
we arrive at the result,

. 9b 6b |
VE( - 7 m* aR P y | —
(15) \E(z)] = 3n A[2R] +2s [b bz] E if |z| = 2b.

10. The derivatives of E(z) at z=0 can be written as
I | E(z)
E® — S B
0 =g 550

where, similarly as in §4, the integration is over the circle

|z| =2b.
It follows that

/!

EQO) = o -4mb- Q577 - mag 1EG),

E
whence, by (15),

! 6b |
oo o= g [l e s o
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We are interested only in the values of / with

0=/=m-—1.
Now

1(2b)-! 1{51 if 0=/[=2b,
(I—D'@2b)~¢-1 ~ 2 |=>1 if [=2b.

Hence, as / runs over the successive values 0, 1,2, ..., the quotient

I
(2b)

first decreases and then starts increasing. This evidently means that

max L = max |1 M
o=t=m-1 (2b)} T @by )

The inequality (16) implies therefore that

-1 9 | 6b |
1 [y alth] - ﬁm ) m* ,aR
17) ,max [ED(0)] = max [1, (2by=1 ]{314/1 [2R] R™* e +2s[b1b2] E}

11. In this inequality we choose now

rR="
a

This is in agreement with the previous assumption that
8 R=3b

provided
m = 3ab.

Instead of this inequality we impose on m the stronger condition

(18) m = 6ab.
It is then possible to show that

(m—1)!=2bp)y" L.
For, since a=1,
m=6b.

Consider now the sequence {c,} where

K]
ck:%'{; k=1,2,3,..).
Then
Cr+1 _ 3 -1
R
%
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k
because, as is well-known, {(1 + }IE) } is an increasing sequence of limit e<3.
Since ¢, =3, it follows that ¢, =3 for all k, and hence that

k! = 3kk3-k,
whence

| w

m-—1
mm3=m — [T] = Q2byn-1,

m—1 =" =

m ¥ 3

I

1
as asserted.
On account of this inequality, the formula (17) takes the form,

@) — (m_l)' 9b m* paR jé__ }
onax [ECON = -0 |31 |35 ) R 2555, F

We combine this result with the lower bound (7). This gives

1 6a )™ _ (m—1 ){ 95) o ar {6b'}
2Abmj = G ”AhR}Re i v

or, on replacing R by its value m/a,

1 6a ™" _ (m—1)! 9ab 6b
) iAbmJ mw*{3Abr][] ’”me]4

12. In order to apply the last relation, let us assume that

[IA

L 6a )™ _ (m—1)! _ (9ab [ ] .
(20) 4 [alaz] = byt 3”{2m] al ¢
it follows then immediately from (19) that
1 6a (m—l)' 6b |
@D ZA&JJ = @by ”b&JE

From these two formulas an important property of E(z) will be deduced.
It is convenient to replace the assumption (20) by a stronger one which has
a simpler form. For this purpose we use the well-known inequality

(m—1)! = emm—te-m

It shows that (20) is certainly satisfied if

1 6a _ em'"ll W 9ab [ m
4 a,a, - (2h)m! 2m) \a)

or, what is the same, if

2 m

(22) mr—m-m* = = 4??” ,,,6,57\‘ (b)) _9_(’2 a-m
Vm J 2

~ To simplify further, put
r=m+mt+t
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where 7 is a positive integer which will be fixed later. Then (22) becomes

) i m+m*+t
m = 24 bﬂ [6{1] (2b)=—m [%Ib} a~—m"

 Vm

aya,
or
201}t ; 2 \m m*
23) 2my 24ebn ( 27a” m(9B)™
9ab Vm \2a,a,) |2
Here, by (18),
m
l=b=—,
6
while, trivially,
n=m
by the definition of m and » in §1. Hence
m
24ebn 246"6v " ,
— = — = dem3/2,
¥y m l/m
Next, the expression
(4em3/2)tim

is easily seen to be a decreasing function of m, and m can by (18) not be smaller
than 6; further

(4e- 632)116 < %

It follows that

g4ebn _ _7_ m
Ym '

3
Hence the inequality (23) is certainly satisfied if

2m | 63a% " (9b)"
. [%b] - [za;a;] [2] |
We assume from now that this inequality holds. Then the inequality (20) and
hence also the inequality (21) are likewise true.
13. The inequality (21) is equivalent to
o m=D! [ 6a \"[ 6b |
A= A e - )
= 8s byt | a,a, E
This relation will now be simplified in a similar manner as was (20). Again
(m—1)! = emm—ze—m

and
r=m4mt 41

tota Mathematica Academiae Scientiarwm Hungaricae 18, 1967



ON A CLASS OF ENTIRE FUNCTIONS 95

The inequality for 4 implies then that
* . Mmeo—m m m+m* +1
4= B5-2b-e mmem [ ba } [ 6b ] -

Vm @by \aya,) \byb,
or
m m* 4+t
(25) g NOebs [ A8am g 6b
Vm \e-a,aybyb,) \b,b,

In order to simplify this formula we use the trivial inequality
S=Er=m-+m*+1

which follows from the definition of r and s in §6. Therefore, by the theorem on
the arithmetical and geometrical means,

s =2Vm-Vm +1,

and so, by b= %1— s

16ebs _ 16e-ﬁ- 2Vm

Vm 6 Vm

Here, similarly as above, by m =6,

16em )" _ (16e-6 )" 7
3 - 3 3’

16em ( 18am ]<[ 42am " 16am ]"‘
3 e‘a1a2b1b2 = e'a1a2b1b2 a102b1b2 )

. l/m*—}-t.

whence

A

Next, both m* and ¢ are positive integers, thus
mt 4 1=2.

Since the function x!/* is increasing for x <e and decreasing for x >e, it follows that

L 2
(,n*+f)7n'*"¥i = max (21/2, 313) < [%}

Vln*‘Ft[ﬂ]m*ﬂ _ [Aﬁé—]m’“ft
by b, -~ byb, )

We have then proved that if ¢ satisfies the inequality (24), then 4 has the upper

bound
16am m Sb m*+tE
aga, by b, by1by

(26) A
We express this result in the form of a theorem.

and hence that

[iA

in terms of E.
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THEOREM 1. Let mgy, my, ...,m,_{, 0, o, F{, ..., Fs_1,S be positive integers,
and let

n—1 s—1
m= 2 m,, m*= max m,, r= 2> 1.
v=0 O=v=n-1 =0
Let oy, 0, ...,0,_1 and Py, By, ..., fs—1 be n and s distinct complex numbers,
respectively, and let

a = max (Jo,], 1), b = max (|, 1),

O=v=n-—-1 O=0=s-1

s—1
a = min ]] IaN_a |mv/m bl - min H {ﬂs—ﬁa’lrc/ra
O=N=n-1, 0=8S=s—1,_¢0
v#N G£S
a, = 0(1311? (IocN o, | mim, 1), b, = mln (]ﬁs B,lrsir 1)
S e 0521
N#v Sto
Denote by
4 w=0,1,...,m,—1
" v=01,..,n-1

any set of m complex numbers. Further put

n—1my—1

E(z) = Z 7 A,y 2t e

v=0 pu=
A= max (4p). E=, max  (E9F)

O=v=n-1 O=0=s—-1

and

Assume, finally, that
m=6ab

om | 63a2 " (9b\™
— Kk ) _ = —_—
=m+m*+1t, where [9ab] = [2a1a2] [2] .

m m*+t

4= 16am 8b E
aya, by b, by b,

COROLLARY. [f m and t satisfy the hypothesis of the theorem, and if, in addition

@ 0 0=0,1,..,r,—1
£ (B, = c=0,1,..,5—1

and that further

Then

then A=0, and E(z) vanishes identically.

( Received 30 November 1965)
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