LECTURES ON
TRANSCENDENTAL NUMBERS

KURT MAHLER

I. In this introductory lecture I shall collect certain properties of transcendental
numbers which are of interest in themselves and may suggest further work.

We shall be concerned only with real or complex numbers, but analogous
theories can be developed for p-adic numbers and for formal power series, say
with coefficients in a finite field.

The number ¢ is called algebraic if there is at least one polynomial

(1) a(n) = ap + ayx + -+ + ax", am #= 0,

with integral coefficients such that a(¢) = 0, and it is called transcendental if no
such polynomial exists.

That there are transcendental numbers was first proved by Liouville in 1844,
and the transcendency of e was established by Hermite in 1873. Since then much
progress has been made and still is being made, and I shall in the following lectures
report on some of this work. However, let us begin with a general necessary and
sufficient, condition for transcendency. For this purpose, it is convenient to use
the notations

L(a) = lao] + |la1| + -+ + lanl,  A(@) = 2"L(a).

The use of L(a), the length of a, is advantageous because this function has much
simpler properties than the height of a. Thus

L(a F b) < L(a) + L(b).  L(ab) < L(a)L(b),
and if a and b are of the degrees m and n, respectively,

L(ab) > 2" L(a)L(b),
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that is, A(ab) > L(a)L(b). Roth’s theorem establishes a necessary, but not suf-
ficient, condition for transcendence. A necessary and sufficient condition is given
by the following theorem:

THEOREM. The number & is transcendental if and only if there exist
(1) an infinite sequence of distinct polynomials

[’

{a1(x), azx(x), az(x), . ..

with integral coefficients, and
(i) an infinite sequence of positive numbers

f Al
Wi, Wa, ws, .. .5
tending to o, such that

0 < |a®)] < A@) ™ (r=1,23,...).

Thus transcendental numbers, but not algebraic ones, can be approximated very
closely by algebraic numbers distinct from them.

I shall not deal with the old classification of transcendental numbers into S, 7,
and U-numbers, but would like to mention a new classification which may possibly
become useful.

If £is any real or complex number and 7 is a positive integer, let & = Z(¢ | £) be
the set of all polynomials of arbitrary degree n, a(z) = ag + - - + a,z", with
integer coefficients such that

a()) # 0,  A(a) = 2"L(a) < t,

and then put
Q¢ = inf Ja(8),
a(z)EX

so that 0 < Q(¢] 1) < 1, and Q(&] 1) is a decreasing function of 7. On putting

w1 = log {1/« | D},

we obtain a nondecreasing function of #, with the following properties:

(D) w(¢]r) = O(logr) if ¢ is algebraic;

(2) w(&] 1) > c(log r)? if ¢ is transcendental (¢ > 0 depends only on £);

(3) if £ and 5 are two transcendental numbers which are algebraically dependent
over Q, then there exist constants ¢y > 0,¢co > 0,7y > 0,72 > 0, 7y > 0, such
that for all # > ¢,

*) w(E]t) > v and w(n|°2) > Yew(£]1).

We may distribute transcendental numbers £ into classes according to the order
of magnitude for  — « of w(&]|#). Then algebraically dependent numbers fall
into the same class provided that functions satisfying (*) are put into the same
class.
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The most interesting classes of numbers for which transcendency has been
proved are given as the values of suitable analytic functions. These functions in
many cases are defined as power series with integral or rational or algebraic
coefficients. Since the time of Weierstrass, many mathematicians have posed
conjectures on values of such functions at algebraic points, e.g. that they cannot
always be algebraic numbers. Surprisingly, most of these conjectures turned out
to be wrong, and mathematicians like Hickel, Faber, Hurwitz, Gelfond, Lek-
kerkerker have obtained results as follows:

(1) There are entire transcendental functions

f@ =3 f
h=0
with rational coeflicients f; such that, for every algebraic «, all values

S (@), f'(), [ (), . ..
are algebraic.

(2) There exist transcendental power series
f@) = hZO fud"

with integral coefficients f;, which converge for |z| < 1, such that, for every
algebraic « satisfying |a| < 1, all values

S(@), (), f"(a), . ...
are algebraic.
(3) There exists a transcendental power series

Q=3 5
h=0

with rational coefficients fj, which converges at least for |z| < p and is here algebraic
for algebraic z and transcendental for transcendental z.
(4) Let

=3 A
h=0

be a power series with real coefficients which represents an entire transcendental
funption, say with exactly the zeros {{y, {2, {3,...;. Then there exists also an
entire transcendental function

F(Z) = Z thh
h=0
with rational coefficients and exactly the same zeros

{?13 ?29?39-'3'-

(5) Let (aq, B1), - . -, (an, By) be finitely many pairs of real or complex numbers,
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as follows:
(a) 0 <o < 1 (fork=1,2,...,n).
(b) If « is real for any k, so is B;.
(c) If a4 is not real, there is an «;, [ 3 k, such that

ap = &, B = By

Then there exists a power series
)
f@) = 20 fix
k=0
with bounded integral coefficients f; such that

Slew) = B (k=1,2,...,n).

We may choose for the a; conjugate algebraic numbers. The result shows then
that f(z) may be algebraic in one of these points and transcendental in the con-
jugate algebraic points.

All these theorems make quite clear that for general power series with rational
or integral coefficients no general assertions on transcendency can be made with
respect to their values at algebraic points. Such values will sometimes be algebraic
and sometimes transcendental.

One has succeeded in proving the transcendence of function values f(a), «
algebraic, mainly in the case where f(z) satisfies one or more functional equations.
Thus Hermite’s proof of the transcendence of e is based on the pair of functional
equations

f{_ ez — ez’ ez+u7 — ezew.

dz

Siegel’s proof of the transcendency of Jy(«) uses the linear differential equation for
Jo(z), and Shidlovski’s more general results apply to the solutions of systems of
linear differential equations.

Let us mention at this point several unsolved problems. They are all in some way
connected with the problem of the digits of a transcendental decimal fraction.

(I). Does there exist a transcendental power series

@ =3 5
h=0

with bounded integral coeflicients which is algebraic in all algebraic points z = «
where |a] < 1?

If the condition of boundedness is dropped, we found that such series do exist.
I conjecture that for transcendental power series with bounded integral coefficients
Ju the sequence {ai, as, as, ...} of algebraic points z = «y, for which f(ay) also
is algebraic always satisfies limy_,,, || = 1. Such points have thus no limit point
in the interior of the unique circle. A simple example is

ﬂn=@u~kﬁ
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If my conjecture is wrong, f(z) may be algebraic in all points z = 1/g, g = 2,

3,... . It would then follow that, for sufficiently large g, the g-adic fraction
> he"
h=0
is algebraic. Since | f3| is bounded, we could add a multiple of the rational number
0 g—h & .
h=0 g - l

and would then get a g-adic series where all coefficients are digits 0, 1, . . ., ¢ with
¢ < g — 1. There would thus be algebraic irrationals, the g-adic series of which
would not contain all digits 0, 1,...,g — 1.

In the case g = 3, my conjecture takes the form

(II) Cantor’s set of all triadic series

0

a
> 5’5 > where a, = 0 or = 2,
=0

does not contain any irrational algebraic number. (It is obvious that there are
infinitely many rational numbers in Cantor’s set.)

II. As a preparation to the deep results by Siegel and Shidlovski, I shall today
discuss some simpler results of mine which appeared in 1929 and 1930 in three
papers in Mathematische Annalen and Mathematische Zeitschrift.

The problem to be discussed is under which additional conditions analytic
functions defined, say, by convergent power series

f@ =2 fi
h=0

can for algebraic z inside the circle of convergence assume algebraic values.

If f(z) is an algebraic function of z, it is not difficult to prove that

(1) f(z) is algebraic at all regular algebraic points z if all the Taylor coefficients
f» are algebraic, but

(i1) there are at most finitely many algebraic points z for which f(z) is algebraic
if at least one coeflicient f}, is transcendental, and these points can be determined.

We exclude now algebraic functions and impose on f(z) the

Ist restriction. f(z)1s a transcendental function of z, and, in the hope of simpler
results, also

2nd restriction. The Taylor coefficients f;, of f(z) are algebraic numbers, say
they lie in a finite algebraic number field K.

Even if these two restrictions are combined, it is not possible to make general
assertions on the function values of f(z) at algebraic points. For we saw already
that there exist even transcendental entire functions with rational coefficients f;,
for which f'(z) is algebraic for all algebraic z. Thus still further restrictions have
to be imposed on f(z).
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These additional restrictions on f(z) usually take the form of one or more
functional equations, in particular of differential equations. By way of example,
Hermite’s proof of the transcendency of e and Lindemann’s proof of the trans-
cendency of = are both based on the pair of functional equations

d , ,
—e® = ¢ and et = e%”.
dz

In the work of Siegel and Shidlovski, an analogous role is played by a system of
linear differential equations.

Let us begin with the simpler case where the additional condition takes the
following form.

3rd restriction. Let p > 2 be a fixed positive integer, and let m be an integer
satisfying 1 < m < p; let further

a(z), bi(z) (=0,1,...,m)

be polynomials in z with algebraic coefficients where a,,(z) and b,,(z) do not both
vanish identically. Further let f(z) satisfy the functional equation

m

> a2 f )}
(0 J@) =T
?_:o bi(2)f ()

This class of functional equation has interest in itself, but not much seems to
be known about it. It can be generalized; thus one might consider the more
general kind of functional equation P(z, f(z), f(z°)) = 0 where P is a polynomial
in its arguments, at most of degree < p in both f(z) and f(z”). When P is of degree
> pin f(z) and f(z*), difficulties arise which I have not so far overcome. This is
regrettable because the transformation equations of the modular function f(z) =
Jj(og z/2wi) are exactly of this kind.

Let f(z) satisfy our three restrictions, and let not only the Taylor coefficients fj,
but also the coefficients of the polynomials a;(z) and b;(z) lie in the finite number
field K, and so let zy and f(zy). The problem to solve is for which values of z,
this can be the case. Naturally K can always be replaced by a larger algebraic
number field; the hypothesis just made is therefore a natural one when both z,
and f(z,) have algebraic values.

If z=0, f(z) = f, certainly is algebraic; we exclude this trivial case and
assume that 0 < |zo| < 1. Then z§" lies for sufficiently large n in the circle of
convergence of f(z), and hence the functional equation (1) enables us to obtain
the value of f(zo) from the series, possibly after solving an algebraic equation.

In fact, on applying (1) successively to

2 n
p P p
205 205 -+ 520

and eliminating f(z8), f(25°), ..., f(z5""") from the equations so obtained, we
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evidently obtain a relation of the form

lmzo a(20) /(20!
@) 1@y = =

m

ZZ b(z0) f (z0)"

where
a(z) and b(2) (I=0,1,...,m"

are certain 2(m" + 1) polynomials in z which have again coefficients in K, and
without loss of generality integral coefficients. From the known value of f(zf")
(known from the power series), the value of f(z,) is obtained by solving (2) for
f(zo). This will only then become impossible when the right-hand side becomes
indeterminate because the polynomials in u,

mn mn
> aE@ut and Y bV,
=0 =0

have a common zero u = u,. A detailed discussion shows that this can happen
only if z, satisfies one of the equations

A =0 (k=0,1,2,..))

where A(z) is the resultant of

> aDu' and Y b2
=0 =0
with respect to u.
Such values of z, may indeed lead to algebraic values of f(z,) as can be seen in
simple examples. We exclude this difficulty by imposing the
4th restriction. For every integer h > 0, z, satisfies A(z5-) # 0.
I would like to add that in the two special cases

m

> a2 f(2)!
f(@) = 1_22—556”_ (bo(2) # 0)
and
FEy = 2@ gy # 0)
;Obmz)f(z)’

the resultant A(z) is to be defined by

A(z) = au(2)bo(z) and  A@2) = ao(2)b,u(2),

respectively.
The four restrictions are sufficient to settle the problem of transcendency f'(z).
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THEOREM. If the function f(z) and the number z, satisfy the four restrictions
and if 0 < |zy| < 1, then zy and f(z,) cannot both lie in K, and therefore at least
one of these two numbers is transcendental.

The proof runs as follows. Denote by p a large positive integer. One can then
construct p 4+ 1 polynomials not all identically zero,

Ao(Z), A1(2)9 ey AIJ(Z)s

of degree at most p with integral coefficients in K such that in the new power series

@) E,() = ?_:o A @) = ,?;, B, say,

all coefficients B, with # < (p + 1)> — 2 are zero. For we have (p + 1)2
coefficients of the A4,(z) at our disposal and need satisfy only the (p + 1) — 1
homogeneous linear equations

BOZBIZ'..=B(1)+I)2-—2=O

for these coefficients where these linear equations have coefficients in K.
By the Ist restriction, E,(z) is not identically zero; there is thus a suffix A
satisfying hy > (p + 1)> — 1 > p? such that

“4) By, # 0.
Let now n be a large positive integer, and let
m" p
E}"(2) = Ey (") {Z b‘z")(Z)f(Z)’} :
=0
By the formula (2), we can also write
km"™

5 EJ(z) = 3 B f(2)!
=0

where the B/™(z) are again polynomials with integral coefficients in K. One can
easily obtain majorants for these polynomials and for E,(,")(z). The hypothesis
of the 4th restriction shows that, for the given z,,

2 b1 (0)f(0)' # 0.
=0
Further, for large n,
E,(z8") ~ Buzt", hence ES"(z¢) # 0.

With the usual taking of the norm it follows then that

(©6) 0 < |EJ(z)| < exp (—cipo™),
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while

@) |Ey (z0)| > exp (—capp™).

Here ¢; > 0 and ¢3 > 0 depend on z,, but not on p and n. From (6) and (7),
a contradiction arises as soon as p and n are sufficiently large. This proves the
theorem.

By way of example, the two functions

0 0

i@ =T1 0 +2% and fuz) = [ (1 — 2%

n=0 u=0

have power series convergent for |z| < 1, and they satisfy the functional equations
2y - J@) NP CI R
£E@) = F2 and fo@) = 727

respectively. Further the resultants become
A(z)=1+2z and A@x)=1—z,
respectively, and hence, for all n,

AZ®Y = 0 if 0< |zl < 1.
Hence if
0 < |zo] <1 and z, is algebraic,

then fi(z,) is transcendental provided fi(z) is a transcendental function. But it is
easily proved that f,(z) = 1/(1 — z) is an algebraic function.

The second function f5(z), however, is transcendental and in fact cannot be
continued beyond |z| = 1.

Much more, and for more general classes of functions, can be proved. Thus
if, e.g.
"
f@ =2

b
n
n=01 — z°

all derivatives
fP@  (k=0,1,2,..)

are easily proved to satisfy a simple system of functional equations similar to the
one studied. One can also show that f(z) does not satisfy any algebraic differential
equation, and that the Taylor coefficients of f(z) are rational integers. From this
it can again be deduced that, if

8) 0 < |zo] < 1, and z, is an algebraic number,
then, for every m, the m + 1 function values

©) [@0), ['(z0), -+ s [ (20)

are algebraically independent over Q.



LECIURES ON TRANSCENDENTAL NUMBERS 251

Perhaps even more interesting is the analogous result for

@) = 3 lhal”
h=0

where w > 0 is a real quadratic irrationality, and [ ] denotes the integral part.
Again, if (8) holds, the function values (9) are algebraically independent.

I have discussed the functions of today’s lecture because somewhat similar
ideas play a role in Shidlovski’s work.

III. In the remaining three lectures, I shall discuss the beautiful results obtained
by Shidlovski by generalizing Siegel’s ideas of 1929.

These results are concerned with entire functions satisfying linear differential
equations with rational functions as coefficients. It is convenient to consider
instead systems of linear differential equations

Q% :wh = 2" quwk + quo (h=1,2,...,m),
=1
where the coefficients
qrks> Gro

are arbitrary rational functions of z. We shall also have to deal with the corre-
sponding homogeneous system

Q: Wh = 2 quiwk h=1,2,...,m).
k=1

While there are no further restrictions on the coefficients gu, gro of Q* and Q,
the theory of Siegel and Shidlovski is specialized by restrictions on the solution

vectors
Wi
w=/|:
wm

of these systems. Not only will only that case be considered in which all the
components

Wy = thlzl (h=1,2,...,m)

=0

are entire functions, but these entire functions will be restricted to a very special
class, the so-called E-functions of Siegel.

These are defined as follows:

Let K be a number field of finite degree N over Q. If « € K, denote as usual by

@ = max (e, o], ..., [« 0]

the maximum of the absolute values of the conjugates of « relative to Q.
The series

0 l
ORIt
=0 .
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is now a Siegel E-function over K if the following conditions are satisfied:

() Allf; e K.

(2) [fl = o) for all / and all € > 0.

(3) There exists for each / > 0 a positive rational integer d; = O(/¢) for all /
and € > 0 such that

d; fi = algebraic integer for k = 0, 1,...,1

The E-functions so defined are entire functions, possibly polynomials. If v € K,
f(vz) also is an E-function. Further the set of all E-functions forms a ring which
is moreover closed under differentiation and under the integration [§ . . . dz.

The E-functions are so important because of the following lemma by Siegel.

LEMMA. Let
0 l
D= fuy G=1.2m)

=0

be finitely many E-functions, say over K, let 0 < ¢ < 1; and let n be any positive
integer. Then there exist n polynomials

pi(z) = é}GhlZl (h=1,2,...,n)
with integral coefficients in K not all zero where
max G = Om+om
Sfor all € > 0, while, on putting
p=mn— [¢n] — 1 and :LZ:I (@) fi(2) = éal %l’

all coefficients ag = ay = -+ =a,_1 =0, and a; = n"O(l¢) for all 1 > p and
e > 0.

Let now in particular

be a solution of the homogeneous system

QIWZ=k§:qhkwk h=1,...,m.
=1

Denote by k(z) the polynomial with leading coefficient 1 which is the least common
denominator of all the gp;. As can be shown easily, since the series f(z) have
Taylor coefficients in K, the same is without loss of generality true for the coeffi-
cients of the gn, and thus of «.
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We put now
AM{w(2)} = 1«21 P1r(2)wi(2),

where
pi(z) = p(z)  (k=1,...,m)

and deduce from A\, infinitely many further linear forms

m

MW@} = 20 pr@wi(2)

=1

where
d
)\h+1 = K ;l,z )\h.

Here w(z) denotes a general solution of Q, and during the differentiation wj, is
replaced by its expression from Q so that

Phaik = KDhie + 2 pikqi  (h=1,2,...,k=1,2,...,m).
=1

J

It is clear that also the p are polynomials in K[z], and the lemma leads to simple
estimates for these coefficients and their conjugates, and also for the functions

M)} = :Z:l @R = 1,2,...).

Siegel proved in special cases, and Shidlovski under very general conditions,
that the determinant
@ pia()
PG) = :
pml(z) e pmm(z)x

is not identically zero. I shall discuss this fundamental question in detail; but let
us for the present just assume that

(H) P(z) # 0.
Denote by @ € K an algebraic number such that

(A) a#0, k(x)#0;

the second condition means that z = a is not a singular point of Q. It can be
deduced easily from (H), and was first done by Siegel in a special case, that there

exist m suffixes 44, . . ., &, satisfying

1 < hy < hy <00 < hy < [¢n] + ny,
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where n, is a constant integer independent of n, such that by (H)

Pria@ e phn(a)

(X) #= 0.

Prpt (@ Phn(e)
One of Shidlovski’s conditions for (H) is that
f1@), - .., fu(2)

are linearly independent over C(z) and hence also over K(z). Let us on the other
hand assume that not more than » < m of the function values

Si(@), .oy frnle)

are linearly independent over K. There exists then an (m — r) X m matrix of

rank m — r,
[511 Tt Sim ]
Sm—r,1 """ Sm—r,m

with elements in K such that

Q)] spifi@ + -+ Simfn(@ =0 (h=1...m—7r);
and we can select r suffixes 4y, . .., Ay, say, ji, . . ., jr, such that
pii(@)  piim(e)
pj,l(a) T Pj,m(a)
S = . : #= 0.
S11 Ctt Sim
Sp—r,1 t Sme—r,m

The equations (1) together with

2 ME@) = pri@fi(@) + -+ pm(@fm()  (h =10

lead therefore to
S) Sfi(a) = ; Sadj(f(@)  (k=1,...,m)

where the S;; are the cofactors of S (row i, column k).

One proceeds now in (S) to take the absolute values of the conjugates on both
sides, and assumes that # is large and € > O small.

The lemma leads easily to the estimates

[phk(a)l = O(n(l+¢+()n) for h = jl’ cees Jrs
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and
@) = O™ ™1™y forh = ji, ..., jm
Therefore

B’“ — O(n(1+¢'+e)nr)’ I:S'-;l _ O(f'l(l+¢+6)n(r—l)).
Also S # 0 lies in K, and there is a positive integer
T = 0(")  (c > Oconst.)

such that ST is an algebraic integer and thus [norm (ST)| > 1. This implies by
the estimate for S a lower bound for |S| which may be written as

Isl—l — O(n(l+2¢)nT(N/6_1)).

Here N is the degree of the field K, and

o = 1 if Kis a real field,
= 2 if K is an imaginary field.

For in the second case two of the conjugates of .S have equal absolute value.
Finally, by (S), and since we can choose k such that fi(a) # O (otherwise
f(2) =0),

1 = O(n(1+2¢)nr(N/u—1))0(n(l+¢+e)n(r—1))0(n_(m_1_7¢)n)‘
Here we make n — oo. The sum of the exponents of n is necessarily > 0, hence
(1 +20)r{(N/o) =1} + 1+ + e —1)—(m—1—7¢) > 0.

Now m, r, and N/o are fixed, and both ¢ and e are arbitrarily small. Thus in the
limit

r{(Njo) =1} +(r— 1) — (m — 1) > 0,

which means that » > om/N. Thus if m of the functions f(2), ..., f.(z) are
linearly independent over C(z), then at least am/N of the function values f(e), . . .
fm(a) are linearly independent over K and hence also over Q.

Here ¢ = N if K = Q, or if K is an imaginary quadratic field.

The result just obtained is in this generality due to Shidlovski. He has extended
it in the following way:

(I) Let not all m functions f;(z) be linearly independent over f(z), but say
only p(z) < m, and let similarly p(«) denote the maximum number of function
values f() that are linearly independent over K or Q. Then

) p(a) > ap(z)/N.

Thus again p(a) = p(2) if K = Q, or if K is an imaginary quadratic field; for
p(a) cannot be larger than p(z).

(II) The results so far deal with linear independence of the components of
f(z) or f(a). The factor o/N on the right hand side of (I) depends only on the
field K. It is this fact which will allow us to deduce from (I) the following final
theorems of Shidlovski.

b
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1ST THEOREM. Let f(z) be a solution in terms of E-functions of

o™ W;L=(Ih0+kz:4hkwk (h=1,2,...,m).
=1

Let o be an algebraic number = 0 which is a regular point of Q*. Here as many
of the components

S1(2), [2(2), - . . fn(2)

of 1(2) are algebraically independent over C(z) as there are components

fl(a)’fZ(a)’ e s.fm(a)
of f(«) that are algebraically independent over Q.

2ND THEOREM. Let f(z2) be a solution in terms of E-functions of

Q:W;1=ZQthk (h=12...m).
k=1

Then for a as above as many of the function ratios

are algebraically independent over C(z) as there are function value ratios
S1(@): fa(@): .. fule)
that are algebraically independent over Q.

These two general theorems have many important specializations, and I hope
to find the time in my last lecture to say a little about it.

IV. This fourth lecture is to deal with the discussion of the determinant P of
the last lecture, and like the next lecture, depends essentially on the work of
Shidlovski. However, I shall for the present slightly generalize his method because
this will bring out the basic ideas in a clearer way.

Let K be any field of characteristic 0, ¢ any constant in K, and K(z — ¢) the
field of formal series

f= l:);fZ(Z—C)Z, fiEK,

where \ is any integer. If fi # 0, we put
ord f= ord, f = \.

We consider a fixed system of formal differential equations

Q3W5z=k§:%kwk (h=1,2...m)
=1
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where the g;; lie in K(z). We shall be concerned in particular with the solutions
f of Q that have components f1, ..., f, in K{z — ¢).

Denote by ¥V, the set of all such solutions; then Vg is a vector space over K.
A basic result asserts that if f1, ..., fyr are finitely many solutions in ¥, which
are linearly independent over K, they are also linearly independent over K{(z — c).
Hence the dimension of V¢ over K, M say, satisfies 0 < M < m.

In the special case when the least common denominator « of all the g;;, is such
that x(c) # 0, i.e. when ¢ is not a pole of any g, always M = m.

For the deeper study of Q one introduces also a vector space over K(z). Let for
the present py, ..., p, be m rational functions in K(z). One can then form the
linear space of all forms

A= AW) = piwi 4 paWm

where w denotes any solution in K(z — ¢) of Q.

Denote by A not this whole linear space, but any linear subspace; thus Xy,
Ao € Aimplies A\; F Ny € A, and r\ € A if r € K(2).

We can differentiate linear forms Mw),

d d & & , ,
7 Aw) = e 12’1 PiWk = IZ_:I (Piwr + Pewh),

and hence by Q,
K 4 Aw) = i o
dz h=1 PrYn

where

pro=K <P5L + 2 pﬂjh)

j=1

On putting D = kd/dz, DX\ is then a linear form of the same type as X\. In par-
ticular, if the p; are polynomials, so are the pj.

The following definition is now basic:

DEerINITION. The vector space A is said to be closed under D if X € A implies
DX\ € A.

THEOREM A. Let Vg be of dimension M over K and A of dimension n over
K(z) where M > n; let further A be closed under D. Then there exists a basis

Wi, oo, Wy
of Vq over K such that

AMwy) = = Nwy_,) =0 forallx €A.
I come now to the main lemmaiof Shidlovski. Let

P11 = Pts---sPDim = Pm
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be any polynomials in K[z], and let
NW) = prwr + 0 DWW

let further, as in yesterday’s lecture,

m
Phy1,k = Kp;fk + Z PhiKqjk-
=1

J

Then all the py;, are polynomials, and the linear forms
M(W) = ppiwt + 0+ DWW w eV

satisfy the recursive relations N,y 1(w) = DN\y(w). It is clear that the definition of
the pur and N, is independent of ¢; hence we are allowed to assume that k(c) # 0
so that z = ¢ is a regular point of Q. This means that Vg has the dimension
M = m and that for every solution of Q,

]

with components in K(z — c), ord, ws > 0.

Having fixed \; and hence N, for & = 1,2, 3, ..., let A be the vector space over
K(z) spanned by these vectors, and let p be the dimension of A over K(z). Since
D)\, = Ny, A is closed under D. If u = m,

)\17)\25~"5)‘m
are linearly independent forms, and hence

Pi1 " DPim
: Sl #£0.

Pm1 """ Pmm

For the present let this easy case be excluded so that 1 < u < m — 1. Since
N1, . .., N\, are linearly independent over K(z), the matrix

. {P_n p}m}
P = : :
Pur 777 Pum

has the rank u. Therefore, without loss of generality, the minor

Py " P}u

Per " Pus

does not vanish identically. Thus the first u columns of p* are linearly independent
over K(z), and the other columns are linearly dependent on them. This means
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that there exist rational functions e;; in K(z) such that
I
phj=2p}”'€1jj I<h<ppt+1< i< m).
i=1

These e;; naturally are unique since P 3# 0, and they depend only on the py; and
grnr and not on c.
Since A is closed under D and evidently has the dimension

n=u where u<m= M,

it follows from Theorem A that there exists a basis

Wi, ..., Wy,
of V¢ such that
*) Mwpe) =0 ifl <A< w1 <k<m—p
Let in explicit form
Wik
wp = | :
Wk

Then

m I m
> Wi = 2+ 2

=1 t=p—+1

1=1

u m ©

> P <Wik + > eijok> = > piWir,
i=1 i=1

j=u+1

M(wy)

I

where we have put m
Wi = wi+ 22 eijwik.

J=p+1
By (*) we have now foreachk = 1,2,...,m — pu
"
* MW = 2 priWi =0 h=1,2,...,u.
i=1
Since P # 0, this requires that
Wa =0 (Gi=12,...,mk=12,...,m— p),

for (**) is a system of u homogeneous equations for u unknowns.
We have thus the result that

() Wa=wp+ 2, epwp=0  (1<i<ul<k<m—p).

J=p+1
It is then not difficult to deduce that the matrix of order m — u
Wetr1 777 Wad Limeu

W@ —

W1 “ e wm,m——u
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is nonsingular,
det w'® 5 0.

{Wn o wlm}
Wit 7 W

certainly is regular, and if det w'® were = 0, one could use the identities (1) to
deduce that also det w = 0.

Put @ = det w'® so that @ 0. One can solve the equations (1) for the rational
functions e;; in the form

For the full solution matrix

@ == (<i<uwut1<j<m

where ©;; is obtained from © on replacing the row

Wity oo v s Wim—u
by the new row

Wils o oo s Wiim—p-

The formulae (2) lead to deeper results on these rational functions e;;.
For this purpose, let us vary the coefficients

3) Pity -5 Dim

of Ay in all ways such that 1 < u < m — 1. Naturally for each choice of the co-
efficients (3) we can expect different e;; and also different bases

Wi, e ooy Wy

of V. Thus the determinants Q, Q,; in (2) will vary.
However, if w), ..., w5, is any one basis of ¥ chosen once for all, the most
general basis wy, . .., w,, has the form

m
wy= D auws (h=1,...,m)
k=1
where

(ahk) (h,k= I,2,...,m)

is an arbitrary nonsingular matrix with elements in K. Thus we arrive at the
following results for the e;;.
Form the matrix of the vectors

Wi, ., W
and denote by »
¢'15¢23" '9¢8

the set which consists of all the elements of this matrix, all its minors of order 2,
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of order 3, etc., and finally of its determinant. Then clearly £ and Q;; can be written
as

Q=cip1+ -+ cshs
—Qyj = cijidr + 0 Cijsds

where the ¢’s are certain elements in K. Then

Cijip1 + 1 T+ Cijshs
cipr + -+ Cotps

where the e;; are rational functions while the ¢ by their definition lie in K(z — c).

If we change now the pp so that u < m remains fixed, only the constant co-
efficients ¢ in (4), but not the ¢’s are changed. From this it can easily be deduced
that

C)) eij =

THEOREM B. While the rational functions e;; may vary with the changes of
the polynomials pyy, the degrees of their numerators and their denominators remain
bounded.

We come finally to the consideration of the determinant

P}l Pgm

Pm1 * Pmm

Let us assume that Q has a solution

]

with components in K(z — ¢) which are linearly independent over K(z).
Denote by dp the degree of a polynomial p, by ord, w the order of any element
win K{(z — ¢). For a polynomial obviously

ord.p < adp ifp £ 0.

Let us now assume that the py; are such that 1 < u < m — 1, that further X
and Y are two integers such that

Ipir < X and ord. A (f) > Y.

We have found already that
Pir " P

p= £ 0.

Pur "7 Pup
It is not difficult to deduce from the recursive formulae for the p; that 0P <
uX + p(u — 1)/2C; where C; depends only on the gx;. Hence also
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Let us put
0) Fi=fi+ 2 eifi (=1...m,
J=p+1
so that certainly all F; # 0 because fi, ..., f, are linearly independent over

K(z). It is easily verified that

() = jzlphiFi h=1...p

and since P £ 0, for all {

(+) PE = 3 Pon) (1< i< .

Lt
h=1

The P,; are cofactors of the polynomials in P, hence are themselves polynomials,
and so ord, P;, > 0. The ¢;;, as we saw, have numerators and denominators of
bounded degrees. Let € be their common denominator which is also of bounded
degree.

From (O),

Fi=efit Y (ce)fi

J=p+1

a formula from which it can be deduced that

max (ord, F;) is bounded.
1<i<u

It can then easily be proved from (4) that
ord, P> Y — (u—1) — Cs

where also C, is an integer independent of the puy.
Since on the other hand

ord. P < ux + Ve,

we deduce that for py < m — 1

< _’11(1”2— De 4+ m—1+ Co, = C say.

Hence, conversely, if
(S) Y—(m— DX>C,
then we cannot have 1 < u < m — 1 and therefore

M= m,
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thus
P11  Pim
. : ?—éo

Pt Tt Pan
(S) is Shidlovski’s main lemma. In the application, we had
X =maxdpy <n—1, Y = ord N(f) > mn — [¢pn] — 1,
where 0 < ¢ < 1; hence

Y—(m—-DX>mn—[¢pn] — 1 —(m — Dn — 1)
> (1 — ¢)n — const.,

and so (S) can certainly be applied as soon as # is sufficiently large.

V. Let again K be a finite number field,

QIWZ= thkwk (h=1,2,...,m),
k=1

a system of homogeneous linear differential equations with coefficients gn;, € K(2),
and k the least common denominator of these coefficients. Let further « be any
algebraic number satisfying o # 0, k(a) # 0, and let

/(@]
)]

be a solution of Q with components that are Siegel E-functions. We saw that
Shidlovski proved the following result.

f(z) =

THEOREM 1. Denote by p(z) the maximum number of components of f(z) that
are linearly independent over K(z), by p(a) the maximum number of components
of f(«) that are linearly independent over K. Then

p(@) 2 7 ().
Here N is the degree of K over Q, and o = 1 if K is real, o = 2 if K is imaginary.

From Theorem 1 we shall deduce two general results on algebraic independence.
Denote by L and L* any two fields of characteristic zero such that L C L*, and

by xi,..., x, any finite number of elements of L*. These elements are called
. H-dependent . exists
algebraically {H—independent} over L if there {does not exist}

a homogeneous polynomial with coefficients in L,

PII(Xb-"an) ?é 07
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such that
Py(xy,...,x,) = 0.

They are similarly called

: dependent | . exists
algebraically {in dependent over L if there { does not exis t}

a polynomial with coefficients in L,

P(Xla~"9Xn)?_éOy

such that
P(xl,. . .,Xn) = 0.
If x4, ..., x, are H-independent, evidently x,, # 0, and
2 - Xn—1
Y1 = x, Yn—1 x,

are independent, and vice versa.

We denote by dy = dy(xy, ..., x,) the maximum number of the xq, ..., x,
that are H-independent, by d = d(xy, ..., x,) the maximum number that are
independent, and we put

Dy = dy — 1.

Consider now the set F(¢) of all the homogeneous polynomials

o h h

PH(X],...,Xn)Z Z .. Z P}(LI)-~-h"X11---Xnn
R0 hp>0
Ry bhy=t

with coefficients in L, of exact degree ¢, and the subset S(¢) of all such polynomials
for which
Py(xy,...,x,) = 0.

Evidently V(?) is a linear vector space over L of dimension

u(t) = (n :i_l 1),

and S(¢) is a subspace, say of dimension s(¢). The difference A(r) = v(t) — s(t)
gives the number of linearly independent homogeneous linear equations with
coefficients in L which the coefficients of Py € S(¢) must satisfy.

As a special case of a much more general theorem by Hilbert of 1890, it can be
proved that

h(1) = h°<DtH> + h1<D1t{—1> + -+ hp, fort> 1,

where iy > 0, hy, ..., hy are certain constant integers. Thus at t — oo,
h(t) ~ ctPH

where ¢ > 0 is a certain constant.
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We return now to the study of the solutions f(z) of Q where as before f(z), . . .,
fm(z) are E-functions. As before let @ = 0, a € K, () 5 0. In difference from
the previous notation denote by Dy(z) 4+ 1 the maximum number of the functions

S1(2), .o fu(2)

that are algebraically H-independent over K(z), by Dg(a) + 1 the maximum
number of function values

S1(a), ..., fin(2)

that are algebraically H-independent over K.

If ¢ is any positive integer, let V,(r) and V,(¢) be the sets of all H-polynomials
of exact degree ¢ with coefficients in K(z), and K, respectively, and S,(z) and Su(?)
the subsets of the polynomials in these sets for which

(2) Pu(f1(2), ..., fu(2)) = 0
and
(@) Pu(fi(e), ..., fu(a)) = 0,

respectively. Let similarly

v(1), va(1),  5:(1), Sa(D)

be the dimensions of these vector spaces, and

h(t) = Uz(t) — 5:(1), ho(t) = va(t) — Sa(t)

the corresponding dimensions. By Hilbert’s theorem there exist then positive
constants ¢, and ¢, such that, as 1 — oo,

(A) ha(t) ~ ctPHE () ~ cqt P,

We finally derive relations between 4.(f) and A,(7). For this purpose let
Wi
W= :
Win

inﬁl:;qhk"’k (h=1,2,...,m)‘
=1

be the general solution of

With each set of integers 44, . .., h,, satisfying
hlz();--"hm?_o’ hl+”'+hm:t

we associate the two products

hy

3
Wiy = Whyn, = Wi w
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and
Fus(@) = Fuyon,(2) = [1@) .. Lo ().
The equations (z) have now on their left-hand side linear forms in the

t+m—«l)

m—1

T = v,(t) = <

products F,(z), and the equations («) have similarly linear forms in the 7 products
Fy(e). 1In either case there are /.(¢) and Ah,(f) such linearly independent homo-
geneous linear forms.

The original system Q for w and f implies an analogous system for the vectors
W, and Fy(e). Thus

m m m
—1 —1
Wiy = Way 22 howi "Wy = Way 22 hwi ' 22 dinwe,
j=1 i=1 k=1
and this is equivalent to a new system
QW) Wiy = 22 4o W,
()

where the coefficients g, are linear forms in the ¢,; with numerical integral
coefficients. Thus also the gy have k as denominator, and «, by k(a) # 0, is a
regular point also for Q(z).

A particular solution for Q(¢) is the vector F(z) with the components Fy)(z)
which evidently are Siegel E-functions. Denote by p.(f) and p,(¢) the maximal
number of components of F(z) and F(a) that are linearly independent over K(z)
and K, respectively. By Shidlovski’s first result,

o
> 9
(B) pa(t) = sz(l)~
We assert now that
p(1) = h(0),  pa(t) = ha(0),
i.e. these ranks are simply the Hilbert functions. The proofs being the same, it
suffices to prove the first relation. There are 7 = v,(f) components of F(z), and

these satisfy s.(¢) linearly independent homogeneous linear equations. Hence the
number of linearly independent components of F(z) is indeed

v.(1) — s.(t) = h(1).
Thus, by (A) and (B),

G g L9 . D>
Cal ha(t) > N hz(t) N c.t .
Allow here t — o. Then it follows that Dy (a) > Dy(z). In fact,

(C) D[{(a) = DH(Z).
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For assume that Dy(a) > Dy(z). We can then without loss of generality assume
that
fi(@), ..., fi(e), where 6 = Dy(a) + 1,

are algebraically H-independent over K. On the other hand,
S1@), ., f5(2)

are certainly algebraically H-dependent over K. Thus there is an H-polynomial
Py(Xy, ..., H, z) # 0 such that

Pu(f1(2), - ... fo(2),2) = O

identically in z. The coefficients of this polynomial are polynomials in K(z), and
we can assume that these polynomials are relatively prime. But then

PH(Xla LRI X55a)
is not identically zero, and
Pp(fi(e), ... . [fo(e), @) = 0

is a nontrivial homogeneous algebraic equation for fi(a), ..., fu(a), which is
impossible.
The relation (C) is equivalent to the

FIRST MAIN THEOREM BY SHIDLOVSKI. Let f(z) be a solution of Q in E-
functions, and let « be an algebraic number such that

a # 0, (a) # 0.

Then the number of components of £(z) that are algebraically H-independent over
K(2) is equal to the number of components of f(a) that are algebraically H-inde-
pendent over K.

It is not difficult to show that in this independence K(z) may be replaced by
C(z) and K by Q.

From this first result we can immediately deduce a perhaps even more striking
result.

SECOND MAIN THEOREM BY SHIDLOVSKI. Let f(z) be a solution of the in-
homogeneous equations

O wh = quno + 2. quewe (h=1,2,...,m)
k=1
in terms of E-functions, and let again « % 0 be a regular algebraic point so that
k(a) # 0. Then the number of components of {(z) that are algebraically independent
over C(z) is equal to the number of components of f(a) that are algebraically inde-
pendent over Q.
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For put wy = 1, fy(z) = 1 and consider the two vectors with the components

Wos Wiy - -y Wy and  fo(2), f1(2), . . ., fr(2).

Both vectors satisfy the homogeneous equations

Wo = 09 W;, = 4drnoWo + kz: qrxWk (h = la 2’ cees m)'
=1

The result is thus an immediate consequence of the First Main Theorem.

Siegel, Shidlovski, and Shidlovski’s students like Oleinikov, have applied the
main theorems to special E-functions and obtained many striking results. Thus
Siegel was the first to show that, for algebraic a > 0, Jo(a) and Ji(e) are algebrai-
cally independent over Q.

That the transcendency of e and = is contained in our results is obvious. For
consider Q: w' = w with the solution f(z) = e* which is an E-function and is
moreover transcendental. Hence e®, for algebraic o > 0, is a transcendental
number by the Second Main Theorem.

Of the many other consequences I mention only two. Firstly, any finite number
of the integrals

1
/ e ?(logz)" dr n=0,12..)
0
are algebraically independent over Q. Secondly, the very complicated number

m Yola) _ ay, -
2 To(@ (’Y + log 2) a # 0 algebraic

is transcendental. Here 7 is Euler’s constant.
Early in 1967 I thought I had a proof of the transcendency of v itself. I made a
mistake.
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