LECTURES ON TRANSCENDENTAL NUMBERS

KURT MAHLER

I. In this introductory lecture I shall collect certain properties of transcendental numbers which are of interest in themselves and may suggest further work.

We shall be concerned only with real or complex numbers, but analogous theories can be developed for p-adic numbers and for formal power series, say

with coefficients in a finite field. The number ξ is called algebraic if there is at least one polynomial

(1)
$$a(n) = a_0 + a_1 x + \cdots + a_m x^m, \quad a_m \neq 0,$$

with integral coefficients such that $a(\xi) = 0$, and it is called transcendental if no

such polynomial exists. That there are transcendental numbers was first proved by Liouville in 1844, and the transcendency of e was established by Hermite in 1873. Since then much progress has been made and still is being made, and I shall in the following lectures

the notations
$$L(a) = |a_0| + |a_1| + \cdots + |a_m|, \quad \Lambda(a) = 2^m L(a).$$

report on some of this work. However, let us begin with a general necessary and sufficient, condition for transcendency. For this purpose, it is convenient to use

The use of L(a), the length of a, is advantageous because this function has much simpler properties than the height of a. Thus

$$L(a \mp b) < L(a) + L(b), \qquad L(ab) < L(a)L(b),$$

and if a and b are of the degrees m and n, respectively,

$$L(ab) \ge 2^{-(m+n)}L(a)L(b),$$

by the following theorem:

THEOREM. The number ξ is transcendental if and only if there exist (i) an infinite sequence of distinct polynomials $\{a_1(x), a_2(x), a_3(x), \ldots\}$ with integral coefficients, and

(ii) an infinite sequence of positive numbers
$$\{\omega_1,\,\omega_2,\,\omega_3,\,\ldots\}$$
 tending to ∞ , such that

LECTURES ON TRANSCENDENTAL NUMBERS

$$0 < |a_r(\xi)| < \Lambda(a_r)^{-\omega_r} \qquad (r = 1, 2, 3, \ldots).$$

If ξ is any real or complex number and t is a positive integer, let $\Sigma = \Sigma(\xi \mid t)$ be

I shall not deal with the old classification of transcendental numbers into S, T, and U-numbers, but would like to mention a new classification which may possibly become useful.

the set of all polynomials of arbitrary degree n, $a(z) = a_0 + \cdots + a_n z^n$, with integer coefficients such that $a(\xi) \neq 0$, $\Lambda(a) = 2^n L(a) \leq t$, and then put

$$a(\xi) \neq 0,$$
 $\Lambda(a) = 2^n L(a)$

$$\Omega(\xi \mid t) = \inf_{a(\xi) \in \Sigma} |a(\xi)|,$$

so that
$$0 \le \Omega(\xi \mid t) \le 1$$
, and $\Omega(\xi \mid t)$ is a decreasing function of t . On putting $\omega(\xi \mid t) = \log \{1/\Omega(\omega \mid t)\}$.

 $\omega(\xi \mid t) = \log \{1/\Omega(\omega \mid t)\},$

which a pandagraging function of
$$t$$
 with the following properties

we obtain a nondecreasing function of t, with the following properties:
(1)
$$\omega(\xi \mid t) = O(\log t)$$
 if ξ is algebraic:

(1) $\omega(\xi \mid t) = O(\log t)$ if ξ is algebraic;

(1)
$$\omega(\xi \mid t) = O(\log t)$$
 if ξ is algebraic;
(2) $\omega(\xi \mid t) > c(\log t)^2$ if ξ is transcendental $(c > 0)$ depends only

(2) $\omega(\xi \mid t) > c(\log t)^2$ if ξ is transcendental (c > 0) depends only on ξ); (3) if ξ and η are two transcendental numbers which are algebraically dependent

over **Q**, then there exist constants
$$c_1 > 0$$
, $c_2 > 0$, $\gamma_1 > 0$, $\gamma_2 > 0$, $t_0 > 0$, such that for all $t \ge t_0$

 $\omega(\xi \mid t^{c_1}) > \gamma_1 \omega(\eta \mid t)$ and $\omega(\eta \mid t^{c_2}) \geq \gamma_2 \omega(\xi \mid t)$. (*)

We may distribute transcendental numbers ξ into classes according to the order of magnitude for $t \to \infty$ of $\omega(\xi \mid t)$. Then algebraically dependent numbers fall into the same class provided that functions satisfying (*) are put into the same class.

conjectures on values of such functions at algebraic points, e.g. that they cannot always be algebraic numbers. Surprisingly, most of these conjectures turned out to be wrong, and mathematicians like Häckel, Faber, Hurwitz, Gelfond, Lek-

Since the time of Weierstrass, many mathematicians have posed

KURT MAHLER

with rational coefficients f_h such that, for every algebraic α , all values $f(\alpha), f'(\alpha), f''(\alpha), \ldots$

 $f(z) = \sum_{h=0}^{\infty} f_h z^h$

 $f(z) = \sum_{h=0}^{\infty} f_h z^h$

with integral coefficients f_h , which converge for |z| < 1, such that, for every algebraic α satisfying $|\alpha| < 1$, all values

$$f(lpha), f'(lpha), f''(lpha), \ldots$$
 are algebraic.

(2) There exist transcendental power series

kerkerker have obtained results as follows: (1) There are entire transcendental functions

are algebraic.

(4) Let

(3) There exists a transcendental power series

$$f(z) = \sum_{n=1}^{\infty} f_n z^n$$

for algebraic z and transcendental for transcendental z.

 $f(z) = \sum_{h=0}^{\infty} f_h z^h$

with rational coefficients
$$f_h$$
 which converges at least for $|z| < \rho$ and is here algebraic

 $f(z) = \sum_{h=0}^{\infty} f_h z^h$ be a power series with real coefficients which represents an entire transcendental

entire transcendental function $F(z) = \sum_{h=0}^{\infty} F_h z^h$

 $\{c_1, c_2, c_3, \ldots\}.$ (5) Let $(\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n)$ be finitely many pairs of real or complex numbers,

function, say with exactly the zeros $\{\zeta_1, \zeta_2, \zeta_3, \ldots\}$. Then there exists also an

25 L

(c) If α_k is not real, there is an α_l , $l \neq k$, such that

 $f(\alpha_k) = \beta_k \qquad (k = 1, 2, \ldots, n).$

and sometimes transcendental.

Then there exists a power series

(a) $0 < |\alpha_k| < 1$ (for k = 1, 2, ..., n). (b) If α_k is real for any k, so is β_k .

 $f(z) = \sum_{h=0}^{\infty} f_h x^h$

with bounded integral coefficients f_s such that

We may choose for the a_k conjugate algebraic numbers. The result shows then that f(z) may be algebraic in one of these points and transcendental in the con-

jugate algebraic points. All these theorems make quite clear that for general power series with rational or integral coefficients no general assertions on transcendency can be made with respect to their values at algebraic points. Such values will sometimes be algebraic

 $\alpha_1 = \bar{\alpha}_k, \quad \beta_1 = \bar{\beta}_k.$

algebraic, mainly in the case where f(z) satisfies one or more functional equations. Thus Hermite's proof of the transcendence of e is based on the pair of functional equations

$$\frac{d}{dz}e^z = e^z, \qquad e^{z+w} = e^z e^w.$$

One has succeeded in proving the transcendence of function values $f(\alpha)$, α

Siegel's proof of the transcendency of $J_0(\alpha)$ uses the linear differential equation for $J_0(z)$, and Shidlovski's more general results apply to the solutions of systems of linear differential equations.

Let us mention at this point several unsolved problems. They are all in some way connected with the problem of the digits of a transcendental decimal fraction.

(I). Does there exist a transcendental power series

$$f(z) = \sum_{h=0}^{\infty} f_h z^h$$

with bounded integral coefficients which is algebraic in all algebraic points $z = \alpha$

where $|\alpha| < 1$? If the condition of boundedness is dropped, we found that such series do exist. I conjecture that for transcendental power series with bounded integral coefficients

 f_h the sequence $\{\alpha_1, \alpha_2, \alpha_3, \ldots\}$ of algebraic points $z = \alpha_k$ for which $f(\alpha_k)$ also is algebraic always satisfies $\lim_{k\to\infty} |\alpha_k| = 1$. Such points have thus no limit point in the interior of the unique circle. A simple example is

 $f(z) = \prod_{n=0}^{\infty} (1 - 2z^{2^{n}}).$

KURT MAHLER If my conjecture is wrong, f(z) may be algebraic in all points z = 1/g, g = 2,

 $\sum_{h=0}^{\infty} f_h g^{-h}$

3, It would then follow that, for sufficiently large g, the g-adic fraction

is algebraic. Since
$$|f_h|$$
 is bounded, we could add a multiple of the rational number

 $\sum_{h=0}^{\infty} g^{-h} = \frac{g}{g-1},$

and would then get a
$$g$$
-adic series where all coefficients are digits $0, 1, \ldots, c$ with $c < g - 1$. There would thus be algebraic irrationals, the g -adic series of which would not contain all digits $0, 1, \ldots, g - 1$.

 $\sum_{n=0}^{\infty} \frac{a_n}{3^n}, \text{ where } a_n = 0 \text{ or } = 2,$

In the case g = 3, my conjecture takes the form

(II) Cantor's set of all triadic series

infinitely many rational numbers in Cantor's set.)

papers in Mathematische Annalen and Mathematische Zeitschrift. The problem to be discussed is under which additional conditions analytic functions defined, say, by convergent power series

$$f(z) = \sum_{i=1}^{\infty} f_{i}$$

does not contain any irrational algebraic number. (It is obvious that there are

 $f(z) = \sum_{h=0}^{\infty} f_h z^h$

can for algebraic
$$z$$
 inside the circle of convergence assume algebraic values. If $f(z)$ is an algebraic function of z , it is not difficult to prove that (i) $f(z)$ is algebraic at all regular algebraic points z if all the Taylor coefficien

(i) f(z) is algebraic at all regular algebraic points z if all the Taylor coefficients f_h are algebraic, but (ii) there are at most finitely many algebraic points z for which f(z) is algebraic

if at least one coefficient f_h is transcendental, and these points can be determined. We exclude now algebraic functions and impose on f(z) the Ist restriction. f(z) is a transcendental function of z, and, in the hope of simpler

results, also 2nd restriction. The Taylor coefficients f_h of f(z) are algebraic numbers, say

they lie in a finite algebraic number field K. Even if these two restrictions are combined, it is not possible to make general assertions on the function values of f(z) at algebraic points. For we saw already

that there exist even transcendental entire functions with rational coefficients f_h for which f(z) is algebraic for all algebraic z. Thus still further restrictions have to be imposed on f(z).

cendency of π are both based on the pair of functional equations

LECTURES ON TRANSCENDENTAL NUMBERS

In the work of Siegel and Shidlovski, an analogous role is played by a system of linear differential equations.

Let us begin with the simpler case where the additional condition takes the following form.
 3rd restriction. Let
$$\rho \geq 2$$
 be a fixed positive integer, and let m be an integer satisfying $1 \leq m < \rho$; let further

These additional restrictions on f(z) usually take the form of one or more functional equations, in particular of differential equations. By way of example, Hermite's proof of the transcendency of e and Lindemann's proof of the trans-

$$a_l(z), b_l(z)$$
 $(l = 0, 1, ..., m)$

be polynomials in z with algebraic coefficients where
$$a_m(z)$$
 and $b_m(z)$ do not both

vanish identically. Further let
$$f(z)$$
 satisfy the functional equation
$$\int_{a}^{b} a_{l}(z)f(z)^{l} dz$$

(1)
$$f(z^{\rho}) = \frac{\sum_{l=0}^{m} a_{l}(z) f(z)^{l}}{\sum_{l=0}^{m} b_{l}(z) f(z)^{l}}.$$

general kind of functional equation $P(z, f(z), f(z^p)) = 0$ where P is a polynomial in its arguments, at most of degree $< \rho$ in both f(z) and $f(z^{\rho})$. When P is of degree $\geq \rho$ in f(z) and $f(z^{\rho})$, difficulties arise which I have not so far overcome. This is regrettable because the transformation equations of the modular function f(z) =

 $i(\log z/2\pi i)$ are exactly of this kind. Let f(z) satisfy our three restrictions, and let not only the Taylor coefficients f_h , but also the coefficients of the polynomials $a_l(z)$ and $b_l(z)$ lie in the finite number field K, and so let z_0 and $f(z_0)$. The problem to solve is for which values of z_0 this can be the case. Naturally K can always be replaced by a larger algebraic

number field; the hypothesis just made is therefore a natural one when both z_0 and $f(z_0)$ have algebraic values. If z = 0, $f(z) = f_0$ certainly is algebraic; we exclude this trivial case and assume that $0 < |z_0| < 1$. Then $z_0^{\rho n}$ lies for sufficiently large n in the circle of convergence of f(z), and hence the functional equation (1) enables us to obtain

the value of $f(z_0)$ from the series, possibly after solving an algebraic equation. In fact, on applying (1) successively to

$$z_0^{\rho}, z_0^{\rho^2}, \ldots, z_0^{\rho^n}$$

and eliminating $f(z_0^{\rho}), f(z_0^{\rho^2}), \ldots, f(z_0^{\rho^{n-1}})$ from the equations so obtained, we

(2)

KURT MAHLER

where $a_l^{(n)}(z)$ and $b_l^{(n)}(z)$ $(l = 0, 1, ..., m^n)$

evidently obtain a relation of the form

where $\Delta(z)$ is the resultant of

are certain $2(m^n + 1)$ polynomials in z which have again coefficients in K, and without loss of generality integral coefficients. From the known value of $f(z_0^{\rho n})$ (known from the power series), the value of $f(z_0)$ is obtained by solving (2) for

 $f(z_0^{p^n}) = \frac{\sum_{l=0}^{n} a_l^{(n)}(z_0) f(z_0)^l}{\sum_{l=0}^{n} b_l^{(n)}(z_0) f(z_0)^l}$

 $f(z_0)$. This will only then become impossible when the right-hand side becomes indeterminate because the polynomials in u, $\sum_{l=0}^{m^{n}} a_{l}^{(n)}(z)u^{l} \text{ and } \sum_{l=0}^{m^{n}} b_{l}^{(n)}(z)u^{l},$

have a common zero $u = u_0$. A detailed discussion shows that this can happen only if z_0 satisfies one of the equations $\Delta(z^{\rho k}) = 0$ (k = 0, 1, 2, ...)

 $\sum_{l=0}^{m} a_l(z)u^l$ and $\sum_{l=0}^{m} b_l(z)u^l$

Such values of z_0 may indeed lead to algebraic values of $f(z_0)$ as can be seen in simple examples. We exclude this difficulty by imposing the 4th restriction. For every integer $h \ge 0$, z_0 satisfies $\Delta(z_0^{\rho}) \ne 0$. I would like to add that in the two special cases

 $f(z^{o}) = \frac{\sum_{l=0}^{\infty} a_{l}(z)f(z)^{l}}{b_{0}(z)} \qquad (b_{0}(z) \neq 0)$ $f(z^{\rho}) = \frac{a_0(z)}{\sum_{l=1}^{m} b_l(z) f(z)^l} \qquad (a_0(z) \not\equiv 0)$

the resultant $\Delta(z)$ is to be defined by

 $\Delta(z) = a_m(z)b_0(z)$ and $\Delta(z) = a_0(z)b_m(z)$,

The four restrictions are sufficient to settle the problem of transcendency f(z).

with respect to u.

and

respectively.

one of these two numbers is transcendental.

construct p + 1 polynomials not all identically zero,

 $A_0(z), A_1(z), \ldots, A_n(z),$

The proof runs as follows. Denote by p a large positive integer. One can then

of degree at most p with integral coefficients in K such that in the new power series $E_p(z) = \sum_{l=0}^{p} A_l(z) f(z)^l = \sum_{k=0}^{\infty} B_k z^k$, say, (3)

all coefficients B_h with $h \le (p+1)^2 - 2$ are zero. For we have $(p+1)^2$

coefficients of the $A_l(z)$ at our disposal and need satisfy only the $(p+1)^2-1$

homogeneous linear equations $B_0 = B_1 = \cdots = B_{(n+1)^2-2} = 0$

for these coefficients where these linear equations have coefficients in K. By the 1st restriction, $E_p(z)$ is not identically zero; there is thus a suffix h_0 satisfying $h_0 \ge (p+1)^2 - 1 > p^2$ such that $B_{h_0} \neq 0$. (4)

Let now n be a large positive integer, and let

$$E_p^{(n)}(z) = E_p(z^{\rho^n}) \left\{ \sum_{l=0}^{m^n} b_l^{(n)}(z) f(z)^l \right\}^p.$$

By the formula (2), we can also write

(5)
$$E_p^{(n)}(z) = \sum_{l=0}^{km^n} B_l^{(n)}(z) f(z)^l$$

where the $B_l^{(n)}(z)$ are again polynomials with integral coefficients in K. One can

where the
$$B_l^{(n)}(z)$$
 are again polynomials with integral coefficients in K . One can easily obtain majorants for these polynomials and for $E_p^{(n)}(z)$. The hypothesis

of the 4th restriction shows that, for the given z_0 ,

 $\sum_{l=0}^{m^n} b_l^{(n)}(z_0) f(z_0)^l \neq 0.$ Further, for large *n*,

ence
$$E_p^{(n)}(z_0)$$

 $E_n(z_0^{\rho^n}) \sim B_{h_0} z_0^{h_0 \rho^n}$, hence $E_n^{(n)}(z_0) \neq 0$.

With the usual taking of the norm it follows then that $0 < |E_n^{(n)}(z_0)| < \exp(-c_1 p^2 \rho^n),$ (6)

a contradiction arises as soon as p and n are sufficiently large. This proves the theorem. By way of example, the two functions

while

Hence if

if, e.g.

(8)

(9)

all derivatives

continued beyond |z| = 1.

it can again be deduced that, if

then, for every m, the m+1 function values

are algebraically independent over **Q**.

(7)

respectively, and hence, for all n, $\Delta(z^{2^n}) \neq 0$ if 0 < |z| < 1.

have power series convergent for |z| < 1, and they satisfy the functional equations

 $f_1(z) = \prod_{n=0}^{\infty} (1 + z^{2^n})$ and $f_2(z) = \prod_{n=0}^{\infty} (1 - z^{2^n})$

 $f_1(z^2) = \frac{f(z)}{1+z}$ and $f_2(z^2) = \frac{f(z)}{1-z}$,

respectively. Further the resultants become

 $\Delta(z) = 1 + z$ and $\Delta(z) = 1 - z$,

 $|E_n^{(n)}(z_0)| > \exp(-c_2p\rho^n).$

Here $c_1 > 0$ and $c_2 > 0$ depend on z_0 , but not on p and n. From (6) and (7),

 $0 < |z_0| < 1$ and z_0 is algebraic,

easily proved that $f_1(z) \equiv 1/(1-z)$ is an algebraic function.

KURT MAHLER

then $f_k(z_0)$ is transcendental provided $f_k(z)$ is a transcendental function. But it is The second function $f_2(z)$, however, is transcendental and in fact cannot be

Much more, and for more general classes of functions, can be proved. Thus

 $f(z) = \sum_{n=0}^{\infty} \frac{z^{\rho^n}}{1 - \frac{\rho^n}{2}},$

 $f^{(k)}(z)$ (k = 0, 1, 2, ...)

are easily proved to satisfy a simple system of functional equations similar to the one studied. One can also show that f(z) does not satisfy any algebraic differential equation, and that the Taylor coefficients of f(z) are rational integers. From this

 $0 < |z_0| < 1$, and z_0 is an algebraic number,

 $f(z_0), f'(z_0), \ldots, f^{(m)}(z_0)$

 $f(z) = \sum_{n=0}^{\infty} [h\omega] z^{n}$

where $\omega > 0$ is a real quadratic irrationality, and [] denotes the integral part.

I have discussed the functions of today's lecture because somewhat similar

Again, if (8) holds, the function values (9) are algebraically independent.

ideas play a role in Shidlovski's work. III. In the remaining three lectures, I shall discuss the beautiful results obtained by Shidlovski by generalizing Siegel's ideas of 1929.

These results are concerned with entire functions satisfying linear differential equations with rational functions as coefficients. It is convenient to consider instead systems of linear differential equations

 $Q^*: w'_h = \sum_{k=1}^m q_{hk}w_k + q_{h0} \qquad (h = 1, 2, ..., m),$

the theory of Siegel and Shidlovski is specialized by restrictions on the solution

where the coefficients
$$q_{hk}, q_{h0}$$
 are arbitrary rational functions of z . We shall also have to deal with the corre-

sponding homogeneous system $Q: w'_h = \sum_{k=1}^m q_{hk}w_k \qquad (h = 1, 2, ..., m).$

While there are no further restrictions on the coefficients
$$q_{hk}$$
, q_{h0} of Q^* and Q ,

 $\mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ \vdots \end{bmatrix}$

$$w_h = \sum_{l=0}^{\infty} w_{hl} z^l \qquad (h = 1, 2, \dots, m)$$

are *entire* functions, but these entire functions will be restricted to a very special

vectors

class, the so-called *E*-functions of Siegel.

These are defined as follows:

Let K be a number field of finite degree N over Q. If $\alpha \in K$, denote as usual by

 $[\overline{\alpha}] = \max(|\alpha|, |\alpha'|, \dots, |\alpha^{(N-1)}|)$

the maximum of the absolute values of the conjugates of α relative to \mathbf{Q} .

The series $f(z) = \sum_{i=1}^{\infty} f_i \frac{z^i}{n}$ (3) There exists for each $l \ge 0$ a positive rational integer $d_l = O(l^{\epsilon l})$ for all l

 $d_l f_k$ = algebraic integer for $k = 0, 1, \dots, l$.

The *E*-functions so defined are entire functions, possibly polynomials. If $\gamma \in K$, $f(\gamma z)$ also is an E-function. Further the set of all E-functions forms a ring which

The E-functions are so important because of the following lemma by Siegel.

(2) $|f_l| = O(l^{\epsilon l})$ for all l and all $\epsilon > 0$.

(1) All $f_i \in K$.

and $\epsilon > 0$ such that

LEMMA. Let

 $\epsilon > 0$.

Let now in particular

cients of the q_{hk} and thus of κ .

be a solution of the homogeneous system

 $p_h(z) = \sum_{l=0}^{\infty} G_{hl}z^l \qquad (h = 1, 2, \dots, n)$ with integral coefficients in K not all zero where

 $\max_{h,l} G_{hl} = O(n^{(1+\epsilon)n})$

 $\mathbf{f}(z) = \begin{bmatrix} f_1(z) \\ \vdots \\ f_n(z) \end{bmatrix}$

 $Q: w'_h = \sum_{k=1}^m q_{hk} w_k \qquad (h = 1, ..., m).$

Denote by $\kappa(z)$ the polynomial with leading coefficient 1 which is the least common denominator of all the q_{hk} . As can be shown easily, since the series $f_h(z)$ have Taylor coefficients in K, the same is without loss of generality true for the coeffi-

$$p = mn - [\phi n] - 1 \quad and \quad \sum_{l=1}^{m} p_{l}(z) f_{l}(z) = \sum_{l=0}^{\infty} a_{l} \frac{z^{l}}{l!},$$

for all
$$\epsilon > 0$$
, while, on putting

integer. Then there exist n polynomials

 $f_h(z) = \sum_{l=0}^{\infty} f_{hl} \frac{z^l}{l!}$ (h = 1, 2, ..., m)

is moreover closed under differentiation and under the integration $\int_0^z \dots dz$.

be finitely many E-functions, say over K; let $0 < \phi < 1$; and let n be any positive

all coefficients $a_0 = a_1 = \cdots = a_{p-1} = 0$, and $a_l = n^p O(l^{\epsilon l})$ for all $l \ge p$ and

 $\lambda_1\{\mathbf{w}(z)\} = \sum_{k=1}^{m} p_{1k}(z)w_k(z),$

 $p_{1k}(z) = p_k(z)$ (k = 1, ..., m)

259

where

where

 $\lambda_h\{\mathbf{w}(z)\} = \sum_{k=1}^m p_{hk}(z)w_k(z)$

and deduce from λ_1 infinitely many further linear forms

 $\lambda_{h+1} = \kappa \frac{d}{ds} \lambda_h.$

replaced by its expression from Q so that

$$\lambda_{h+1} = \kappa \, \frac{d}{dz} \, \lambda_h.$$
 Here $\mathbf{w}(z)$ denotes a general solution of Q , and during the differentiation w_h' is

Siegel proved in special cases, and Shidlovski under very general conditions, that the determinant

 $p_{h+1,k} = \kappa p'_{hk} + \sum_{i=1}^{m} p_{hj} \kappa q_{jk}$ (h = 1, 2, ..., k = 1, 2, ..., m).It is clear that also the p_{hk} are polynomials in K[z], and the lemma leads to simple estimates for these coefficients and their conjugates, and also for the functions

 $P(z) = \begin{bmatrix} p_{11}(z) & \cdots & p_{1m}(z) \\ \vdots & & \vdots \\ p_{11}(z) & \cdots & p_{1m}(z) \end{bmatrix}$

us for the present just assume that $P(z) \not\equiv 0$. (H)

Denote by $\alpha \in K$ an algebraic number such that

 $\alpha \neq 0$, $\kappa(\alpha) \neq 0$; (A) the second condition means that z = a is not a singular point of **Q**. It can be deduced easily from (H), and was first done by Siegel in a special case, that there exist m suffixes h_1, \ldots, h_m satisfying

 $1 \leq h_1 < h_2 < \cdots < h_m \leq [\phi n] + n_0$

 $\lambda_h\{\mathbf{f}(z)\} = \sum_{k=1}^{m} p_{hk}(z) f_k(z) \qquad (k = 1, 2, ...).$

is not identically zero. I shall discuss this fundamental question in detail; but let

260

rank m - r,

(1)

(2)

(S)

lead therefore to

with elements in K such that

The equations (1) together with

KURT MAHLER

One of Shidlovski's conditions for (H) is that $f_1(z), \ldots, f_m(z)$

and we can select r suffixes h_1, \ldots, h_m , say, j_1, \ldots, j_r , such that

where n_0 is a constant integer independent of n, such that by (H)

are linearly independent over C(z) and hence also over K(z). Let us on the other

hand assume that not more than r < m of the function values

 $f_1(\alpha), \ldots, f_m(\alpha)$

are linearly independent over K. There exists then an $(m-r) \times m$ matrix of

 $\begin{bmatrix} s_{11} & \cdots & s_{1m} \\ \vdots & & \vdots \\ s_{m-1} & s_{m} \end{bmatrix}$

 $S \equiv \begin{vmatrix} p_{j_1 1}(\alpha) & \cdots & p_{j_1 m}(\alpha) \\ \vdots & & \ddots & \vdots \\ p_{j_r 1}(\alpha) & \cdots & p_{j_r m}(\alpha) \\ \vdots & & \ddots & \vdots \\ s_{1 1} & \cdots & s_{1 m} \\ \vdots & & \ddots & \vdots \\ s_{n-r, 1} & \cdots & s_{m-r, m} \end{vmatrix} \neq 0.$

 $\lambda_h(\mathbf{f}(\alpha)) = p_{h_1}(\alpha)f_1(\alpha) + \cdots + p_{h_m}(\alpha)f_m(\alpha) \qquad (h = j_1, \ldots, j_r)$

 $Sf_k(\alpha) = \sum_{i=1}^r S_{ik} \lambda_{j_i}(\mathbf{f}(\alpha)) \qquad (k = 1, ..., m)$

One proceeds now in (S) to take the absolute values of the conjugates on both

 $\overline{|p_{hk}(\alpha)|} = O(n^{(1+\phi+\epsilon)n})$ for $h = j_1, \ldots, j_r$,

where the S_{ik} are the cofactors of S (row i, column k).

sides, and assumes that n is large and $\epsilon > 0$ small. The lemma leads easily to the estimates

 $s_{h,1}f_1(\alpha) + \cdots + s_{h,m}f_m(\alpha) = 0$ $(h = 1 \dots m - r);$

and

Therefore

 $|\overline{S}| = O(n^{(1+\phi+\epsilon)nr}), \qquad |\overline{S}_{ii}| = O(n^{(1+\phi+\epsilon)n(r-1)})$ Also $S \neq 0$ lies in K, and there is a positive integer

 $T = O(e^{cn})$ (c > 0 const.)

$$T = O(e^{cn}) \qquad (c > 0 \text{ co})$$

such that ST is an algebraic integer and thus $|\text{norm}(ST)| \ge 1$. This implies by

algebraic integer and thus
$$|$$
norm a lower bound for $|S|$ which ma

the estimate for S a lower bound for |S| which may be written as

$$|S|^{-1} = O(n^{(1+2\phi)nr(N/\sigma-1)}).$$

Here N is the degree of the field K, and

 $|\lambda_h(\mathbf{f}(\alpha))| = O(n^{-(m-1-7\phi)n})$ for $h = j_1, \ldots, j_m$

$$\sigma = 1$$
 if K is a real field,

= 2 if K is an imaginary field.

For in the second case two of the conjugates of
$$S$$
 have equal absolute value.
Finally, by (S), and since we can choose k such that $f_k(\alpha) \neq 0$ (otherwise

 $f(z)\equiv 0$),

$$\equiv 0),$$

$$1 = O(n^{(1+2\phi)nr(N/\sigma-1)})O(n^{(1+\phi+\epsilon)n(r-1)})O(n^{-(m-1-7\phi)n}).$$
The sum of the exponents of n is necessarily in the exponents of n is necessarily in the exponents.

Here we make $n \to \infty$. The sum of the exponents of n is necessarily > 0, hence

we make
$$n \to \infty$$
. The sum of the exponents of n is necessarily ≥ 0 , he $(1 + 2\phi)r\{(N/\sigma) - 1\} + (1 + \phi + \epsilon)(r - 1) - (m - 1 - 7\phi) \geq 0$.

Now m, r, and N/σ are fixed, and both ϕ and ϵ are arbitrarily small. Thus in the limit

which means that
$$r \ge \sigma m/N$$
. Thus if m of the functions $f_1(z), \ldots, f_m(z)$ are linearly independent and $f_1(z), \ldots, f_m(z)$ are

linearly independent over C(z), then at least $\sigma m/N$ of the function values $f_1(\alpha), \ldots$ $f_m(\alpha)$ are linearly independent over K and hence also over Q. Here $\sigma = N$ if $K = \mathbf{Q}$, or if K is an imaginary quadratic field.

The result just obtained is in this generality due to Shidlovski. He has extended it in the following way:

(I) Let not all
$$m$$
 functions $f_h(z)$ be linearly independent over $f(z)$, but say

(I) Let not all m functions $f_h(z)$ be linearly independent over f(z), but say only $\rho(z) \le m$, and let similarly $\rho(\alpha)$ denote the maximum number of function

only
$$\rho(z) \leq m$$
, and let similarly $\rho(\alpha)$ denote the maximum values $f_h(\alpha)$ that are linearly independent over K or \mathbb{Q} . Then

 $\rho(\alpha) \geq \sigma \rho(z)/N$. **(I)**

theorems of Shidlovski.

Thus again $\rho(\alpha) = \rho(z)$ if $K = \mathbf{Q}$, or if K is an imaginary quadratic field; for $\rho(\alpha)$ cannot be larger than $\rho(z)$. (II) The results so far deal with linear independence of the components of $\mathbf{f}(z)$ or $\mathbf{f}(\alpha)$. The factor σ/N on the right hand side of (I) depends only on the field K. It is this fact which will allow us to deduce from (I) the following final of the components

KURT MAHLER

of $f(\alpha)$ that are algebraically independent over Q.

of
$$\mathbf{f}(z)$$
 are algebraically independent over $\mathbf{C}(z)$ as there are components $f_1(\alpha), f_2(\alpha), \ldots, f_m(\alpha)$

 $Q^*: w'_h = q_{h0} + \sum_{k=1}^m q_{hk}w_k$ (h = 1, 2, ..., m).

Let α be an algebraic number $\neq 0$ which is a regular point of Q^* . Here as many

 $f_1(z), f_2(z), \ldots, f_m(z)$

2ND THEOREM. Let f(z) be a solution in terms of E-functions of

$$Q: w'_h = \sum_{k=1}^m q_{hk} w_k \qquad (h = 1, 2 \dots m).$$

Then for α as above as many of the function ratios

$$f_1(z) \mid f_2(z) \colon \ldots \colon f_m(z)$$

$$f_1(z) \mid f_2(z) \colon \dots \colon f_m(z)$$
 are algebraically independent over $\mathbb{C}(z)$ as there are function value ratios

$$f_1(\alpha)$$
: $f_2(\alpha)$: . . . : $f_m(\alpha)$

These two general theorems have many important specializations, and I hope to find the time in my last lecture to say a little about it. IV. This fourth lecture is to deal with the discussion of the determinant P of

the last lecture, and like the next lecture, depends essentially on the work of Shidlovski. However, I shall for the present slightly generalize his method because this will bring out the basic ideas in a clearer way.

Let K be any field of characteristic 0, c any constant in K, and K(z-c) the field of formal series

$$f = \sum_{l=\lambda}^{\infty} f_l(z-c)^l, \quad f_l \in K,$$

where λ is any integer. If $f_{\lambda} \neq 0$, we put

ord $f = \operatorname{ord}_c f = \lambda$.

We consider a fixed system of formal differential equations

$$Q: w'_h = \sum_{k=1}^m q_{hk} w_k \qquad (h = 1, 2 \dots m)$$

where the q_{hk} lie in K(z). We shall be concerned in particular with the solutions

Denote by V_Q the set of all such solutions; then V_Q is a vector space over K.

In the special case when the least common denominator κ of all the q_{hk} is such

For the deeper study of Q one introduces also a vector space over K(z). Let for the present p_1, \ldots, p_m be m rational functions in K(z). One can then form the

 $\lambda = \lambda(\mathbf{w}) = p_1 w_1 + \cdots + p_m w_m$ where w denotes any solution in K(z-c) of Q. Denote by Λ not this whole linear space, but any linear subspace; thus λ_1 ,

f of *Q* that have components f_1, \ldots, f_m in K(z-c).

Hence the dimension of V_Q over K, M say, satisfies $0 \le M \le m$.

that $\kappa(c) \neq 0$, i.e. when c is not a pole of any q_{hk} , always M = m.

 $\kappa \frac{d}{dz} \lambda(w) = \sum_{h=1}^{m} p_h^* w_h$

 $p_h^* = \kappa \left(p_h' + \sum_{j=1}^m p_j q_{jh} \right).$

and hence by Q,

 $\lambda_2 \in \Lambda$ implies $\lambda_1 \mp \lambda_2 \in \Lambda$, and $r\lambda \in \Lambda$ if $r \in K(z)$. We can differentiate linear forms $\lambda(\omega)$, $\frac{d}{dz}\lambda(w) = \frac{d}{dz}\sum_{k=1}^{m}p_kw_k = \sum_{k=1}^{m}(p'_kw_k + p_kw'_k),$

linear space of all forms

where

On putting $D = \kappa d/dz$, $D\lambda$ is then a linear form of the same type as λ . In particular, if the p_h are polynomials, so are the p_h^* . The following definition is now basic:

DEFINITION. The vector space Λ is said to be closed under D if $\lambda \in \Lambda$ implies

 $D\lambda \in \Lambda$.

THEOREM A. Let V_O be of dimension M over K and Λ of dimension n over

K(z) where M > n; let further Λ be closed under D. Then there exists a basis

 $\mathbf{w}_1, \ldots, \mathbf{w}_M$ of VQ over K such that

I come now to the main lemma of Shidlovski. Let

 $\lambda(\mathbf{w}_1) = \cdots = \lambda(\mathbf{w}_{M-n}) = 0$ for all $\lambda \in \Lambda$.

 $p_{11} = p_1, \ldots, p_{1m} = p_m$

KURT MAHLER

$$p_{h+1,k} = \kappa p_{hk}^* + \sum_{j=1}^m p_{hj} \kappa q_{jk}.$$
 Then all the p_{hk} are polynomials, and the linear forms

 $\lambda_1(\mathbf{w}) = p_{11}w_1 + \cdots + p_{1m}w_m;$

$$\lambda_h(\mathbf{w}) = p_{h\,1}w_1 + \dots + p_{hm}w_m \qquad (\mathbf{w} \in V_Q)$$
 whish the recursive relations $\lambda_{h+1}(\mathbf{w}) = D\lambda_h(\mathbf{w})$. It is clear that

satisfy the recursive relations $\lambda_{h+1}(\mathbf{w}) = D\lambda_h(\mathbf{w})$. It is clear that the definition of the p_{hk} and λ_h is independent of c; hence we are allowed to assume that $\kappa(c) \neq 0$

so that
$$z = c$$
 is a regular point of Q . This means that V_Q has the dimension $M = m$ and that for every solution of Q ,
$$\begin{bmatrix} w_1 \end{bmatrix}$$

let further, as in yesterday's lecture,

 $\mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w \end{bmatrix}$

with components in
$$K(z-c)$$
, ord_c $w_h \ge 0$.
Having fixed λ_1 and hence λ_h for $h=1,2,3,\ldots$, let Λ be the vector space over

K(z) spanned by these vectors, and let μ be the dimension of Λ over K(z). Since $D\lambda_h = \lambda_{h+1}$, Λ is closed under D. If $\mu = m$, $\lambda_1, \lambda_2, \ldots, \lambda_m$

$$\lambda_1, \lambda_2, \dots, \lambda_m$$
 are linearly independent forms, and hence
$$\begin{vmatrix} p_{11} & \cdots & p_{1m} \\ \vdots & & & 1 \end{vmatrix} \neq 0$$

 $\begin{vmatrix} p_{11} & \cdots & p_{1m} \\ \vdots & & \vdots \\ p_{1m} & \cdots & p_{1m} \end{vmatrix} \not\equiv 0.$

For the present let this easy case be excluded so that
$$1 \le \mu \le m-1$$
. $\lambda_1, \ldots, \lambda_{\mu}$ are linearly independent over $K(z)$, the matrix
$$\begin{bmatrix} p_{11} & \cdots & p_{1m} \end{bmatrix}$$

 $p^* = \begin{bmatrix} p_{11} & \cdots & p_{1m} \\ \vdots & & \vdots \\ p_1 & \cdots & p_{1m} \end{bmatrix}$

$$\begin{bmatrix} p_{1m} \\ \vdots \\ p_{\mu m} \end{bmatrix}$$

has the rank μ . Therefore, without loss of generality, the minor

$$P = \begin{vmatrix} p_{11} & \cdots & p_{1\mu} \\ \vdots & & \vdots \\ \vdots & & \vdots \end{vmatrix}$$

does not vanish identically. Thus the first μ columns of p^* are linearly independent over K(z), and the other columns are linearly dependent on them. This means q_{hk} and not on c.

 $p_{hj} = \sum_{i=1}^{\mu} p_{hi}e_{ij}$ $(1 \le h \le \mu, \mu + 1 \le j \le m).$ These e_{ij} naturally are unique since $P \not\equiv 0$, and they depend only on the p_{hk} and

Since Λ is closed under D and evidently has the dimension $n = \mu$ where $\mu < m = M$.

it follows from Theorem A that there exists a basis

of
$$V_Q$$
 such that

)
$$\lambda_h(\mathbf{w}_k) = 0 \quad \text{if } 1 \leq h \leq \mu; \ 1 \leq k \leq m - \mu.$$

$$\lambda_h(\mathbf{w}_k) = 0 \quad \text{if } 1 \leq h \leq \mu; \, 1 \leq k \leq m-\mu.$$

(*)
$$\lambda_h(\mathbf{w}_k) = 0$$
 if $1 \le h \le \mu$; $1 \le k \le m$.
Let in explicit form $\begin{bmatrix} w_{1k} \end{bmatrix}$

in explicit form
$$\mathbf{w}_{k} = \begin{bmatrix} w_{1k} \\ \vdots \end{bmatrix}$$

$$\mathbf{w}_k = egin{bmatrix} w_{1k} \ dots \ w_{mk} \end{bmatrix}.$$
 Then

$$\lambda_h(\mathbf{w}_k) = \sum_{i=1}^m p_{hi} w_{ik} = \sum_{i=1}^\mu + \sum_{i=\mu+1}^m \\ = \sum_{i=1}^\mu p_{hi} \left(w_{ik} + \sum_{j=\mu+1}^m e_{ij} w_{jk} \right) = \sum_{i=1}^\mu p_{hi} W_{ik},$$

where we have put
$$W_{ik} = w_{ik} + \sum_{i=n+1}^{m} e_{ij}w_{jk}.$$

$$j=\mu+1$$

By (*) we have now for each
$$k = 1, 2, ..., m - \mu$$

$$\lambda_h(\mathbf{w}_k) = \sum_{i=1}^{\mu} p_{hi} W_{ik} = 0 \qquad (h = 1, 2, ..., \mu).$$

$$i=1$$

Since $P \neq 0$, this requires that

$$W_{ik} = 0$$
 $(i = 1, 2, ..., \mu; k = 1, 2, ..., m - \mu),$

for (**) is a system of μ homogeneous equations for μ unknowns.

(1)
$$W_{ik} \equiv w_{ik} + \sum_{j=\mu+1}^{m} e_{ij}w_{jk} = 0$$
 $(1 \le i \le \mu, 1 \le k \le m-\mu).$

It is then not difficult to deduce that the matrix of order $m - \mu$

$$w^{(0)} = \begin{bmatrix} w_{\mu+1,1} & \cdots & w_{\mu+1,m-\mu} \\ \vdots & & \vdots \\ w_{m1} & \cdots & w_{m,m-\mu} \end{bmatrix}.$$

deduce that also det w = 0.

266

is nonsingular,

KURT MAHLER

certainly is regular, and if det $w^{(0)}$ were = 0, one could use the identities (1) to Put $\Omega = \det w^{(0)}$ so that $\Omega \neq 0$. One can solve the equations (1) for the rational

 $W_{i1}, \ldots, W_{i,m-\mu}$

 $w_{i1}, \ldots, w_{i,m-u}$

 p_{11},\ldots,p_{1m}

 $\mathbf{w}_1, \ldots, \mathbf{w}_m$

 $\det w^{(0)} \neq 0.$

functions e_{ij} in the form $e_{ij} = -\frac{\Omega_{ij}}{\Omega}$ $(1 \le i \le \mu; \mu + 1 \le j \le m)$ (2)

where Ω_{ij} is obtained from Ω on replacing the row

by the new row

The formulae (2) lead to deeper results on these rational functions e_{ij} . For this purpose, let us vary the coefficients

(3)

of λ_1 in all ways such that $1 \le \mu \le m-1$. Naturally for each choice of the coefficients (3) we can expect different e_{ij} and also different bases of V_Q . Thus the determinants Ω , Ω_{ij} in (2) will vary.

However, if $\mathbf{w}_1^0, \dots, \mathbf{w}_m^0$ is any one basis of V_Q chosen once for all, the most general basis $\mathbf{w}_1, \ldots, \mathbf{w}_m$ has the form

 $\mathbf{w}_h = \sum_{k=1}^m a_{hk} \mathbf{w}_k^0 \qquad (h = 1, \dots, m)$ where

 (a_{hk}) $(h, k = 1, 2, \ldots, m)$ is an arbitrary nonsingular matrix with elements in K. Thus we arrive at the following results for the e_{ij} . Form the matrix of the vectors

 $\mathbf{w}_1^0, \ldots, \mathbf{w}_m^0$

and denote by the set which consists of all the elements of this matrix, all its minors of order 2, where the c's are certain elements in K. Then $e_{ij} = \frac{c_{ij1}\phi_1 + \cdots + c_{ijs}\phi_s}{c_1\phi_1 + \cdots + c_s\phi_s}$ (4)

 $\Omega = c_1\phi_1 + \cdots + c_s\phi_s$ $-\Omega_{ii} = c_{ii1}\phi_1 + \cdots + c_{iis}\phi_s$

where the
$$e_{ij}$$
 are rational functions while the ϕ by their definition lie in $K\langle z-c\rangle$. If we change now the p_{hk} so that $\mu < m$ remains fixed, only the constant coefficients c in (4), but not the ϕ 's are changed. From this it can easily be deduced

THEOREM B. While the rational functions e_{ij} may vary with the changes of the polynomials p_{hk} , the degrees of their numerators and their denominators remain bounded.

 $\begin{vmatrix} p_{11} & \cdots & p_{1m} \\ \vdots & & \vdots \\ p_{m1} & \cdots & p_{mm} \end{vmatrix}.$

Let us assume that Q has a solution $\mathbf{f} = \begin{bmatrix} f_1 \\ \vdots \\ c \end{bmatrix}$

We come finally to the consideration of the determinant

with components in
$$K(z-c)$$
 which are linearly independent over $K(z)$.

Denote by ∂p the degree of a polynomial p , by ord_c w the order of any element

w in K(z-c). For a polynomial obviously

ord_c $p < \partial p$ if $p \not\equiv 0$.

$$\operatorname{ord}_{c} p \leq \partial p \quad \text{if } p \not\equiv 0.$$
 Let us now assume that the p_{hk} are such that $1 \leq \mu \leq m-1$, that further X

and Y are two integers such that

that

$$\partial p_{1k} \leq X$$
 and $\operatorname{ord}_c \lambda_1(\mathbf{f}) \geq Y$.
y that $|p_{11} \cdots p_{1n}|$

 $\operatorname{ord}_{c} P \leq \mu X + \frac{\mu(\mu - 1)}{2} C_{1}.$

We have found already that $P = \begin{vmatrix} p_{11} & \cdots & p_{1\mu} \\ \vdots & & \vdots \\ p_{1\mu} & \vdots \\ p_{1$

$$P = \begin{vmatrix} p_{11} & \cdots & p_{1\mu} \\ \vdots & & \vdots \\ p_{\mu 1} & \cdots & p_{\mu \mu} \end{vmatrix} \not\equiv 0.$$

It is not difficult to deduce from the recursive formulae for the p_{hk} that $\partial P \leq$

 $\mu X + \mu(\mu - 1)/2C_1$ where C_1 depends only on the q_{hk} . Hence also

KURT MAHLER

(+)

degree. From (O),

K(z). It is easily verified that

and since $P \neq 0$, for all i

 $PF_i = \sum_{h=1}^{\mu} P_{ih} \lambda_h(\mathbf{f}) \qquad (1 \le i \le \mu).$

a formula from which it can be deduced that

It can then easily be proved from (+) that

Since on the other hand

we deduce that for $\mu \leq m-1$

Hence, conversely, if

(S)

where also C_2 is an integer independent of the p_{hk} .

then we cannot have $1 \le \mu \le m-1$ and therefore

and so ord_c $P_{ih} \geq 0$. The e_{ij} , as we saw, have numerators and denominators of bounded degrees. Let ϵ be their common denominator which is also of bounded

The P_{ih} are cofactors of the polynomials in P, hence are themselves polynomials,

 $\epsilon F_i = \epsilon f_i + \sum_{i=n+1}^m (\epsilon e_{ij}) f_j,$

 $\max_{1 \le i \le \mu} (\operatorname{ord}_c F_i) \quad \text{is bounded.}$

ord, $P > Y - (\mu - 1) - C_2$

 $\operatorname{ord}_{c} P \leq \mu X + \frac{\mu(\mu - 1)}{2} C_{1},$

Y - (m-1)X > C,

 $\leq \frac{m(m-1)}{2}C_1+(m-1)+C_2$, = C say.

 $Y - (m-1)X \le Y - \mu X \le \frac{\mu(\mu-1)}{2} C_1 + (\mu-1) + C_2$

 $F_i = f_i + \sum_{i=n+1}^{m} e_{ij} f_j$ $(i = 1 \dots \mu),$

 $\lambda_h(\mathbf{f}) = \sum_{i=1}^{\mu} p_{hi} F_i \qquad (h = 1 \dots \mu)$

 $\begin{vmatrix} p_{11} & \cdots & p_{1m} \\ \vdots & & \vdots \\ p_{m+1} & \cdots & p_{m+1} \end{vmatrix} \not\equiv 0$

(S) is Shidlovski's main lemma. In the application, we had
$$X = \max \partial p_{1k} \le n-1, \qquad Y = \operatorname{ord} \lambda_1(f) \ge mn - [\phi n] - 1,$$

LECTURES ON TRANSCENDENTAL NUMBERS

thus

where $0 < \phi < 1$; hence

$$Y - (m-1)X \ge mn - [\phi n] - 1 - (m-1)(n-1)$$

 $> (1 - \phi)n - \text{const.}$ and so (S) can certainly be applied as soon as n is sufficiently large.

V. Let again
$$K$$
 be a finite number field,

 $Q: w'_h = \sum_{k=1}^m q_{hk} w_k \qquad (h = 1, 2, ..., m),$ a system of homogeneous linear differential equations with coefficients $q_{hk} \in K(z)$, and κ the least common denominator of these coefficients. Let further α be any

algebraic number satisfying
$$\alpha \neq 0$$
, $\kappa(\alpha) \neq 0$, and let
$$\mathbf{f}(z) = \begin{bmatrix} f_1(z) \\ \vdots \\ f_m(z) \end{bmatrix}$$
 be a solution of Q with components that are Siegel E -functions. We saw that

Shidlovski proved the following result. **THEOREM 1.** Denote by $\rho(z)$ the maximum number of components of $\mathbf{f}(z)$ that are linearly independent over K(z), by $\rho(\alpha)$ the maximum number of components

of
$$\mathbf{f}(\alpha)$$
 that are linearly independent over K . Then
$$\rho(\alpha) \geq \frac{\sigma}{N} \, \rho(z).$$

Here N is the degree of K over Q, and $\sigma = 1$ if K is real, $\sigma = 2$ if K is imaginary.

From Theorem 1 we shall deduce two general results on algebraic independence. Denote by L and L* any two fields of characteristic zero such that $L \subset L^*$, and

by x_1, \ldots, x_n any finite number of elements of L^* . These elements are called

algebraically $\left\{ \begin{array}{l} \textit{H}\text{-dependent} \\ \textit{H}\text{-independent} \end{array} \right\}$ over L if there $\left\{ \begin{array}{l} \text{exists} \\ \text{does not exist} \end{array} \right\}$

a homogeneous polynomial with coefficients in L,

 $P_H(X_1,\ldots,X_n)\not\equiv 0,$

algebraically $\left\{\begin{array}{l} \text{dependent} \\ \text{independent} \end{array}\right\}$ over L if there $\left\{\begin{array}{l} \text{exists} \\ \text{does not exist} \end{array}\right\}$

They are similarly called

such that

such that

a polynomial with coefficients in L,

 $P(X_1,\ldots,X_n)\not\equiv 0,$

 $P(x_1,\ldots,x_n)=0.$

 $P_H(x_1,\ldots,x_n)=0.$

If x_1, \ldots, x_n are *H*-independent, evidently $x_n \neq 0$, and $y_1 = \frac{x_1}{x}, \dots, y_{n-1} = \frac{x_{n-1}}{x}$

 $D_{II}=d_{II}-1.$

 $P_H(X_1,\ldots,X_n) = \sum_{h_1 \geq 0} \ldots \sum_{h_n \geq 0} P_{h_1}^{(H)} \ldots_{h_n} X_1^{h_1} \ldots X_n^{h_n}$

with coefficients in L, of exact degree t, and the subset S(t) of all such polynomials

 $P_H(x_1,\ldots,x_n)=0.$

 $v(t) = \binom{n+t-1}{n-1},$

and S(t) is a subspace, say of dimension s(t). The difference h(t) = v(t) - s(t)gives the number of linearly independent homogeneous linear equations with

As a special case of a much more general theorem by Hilbert of 1890, it can be

 $h(t) = h_0 \binom{t}{D_H} + h_1 \binom{t}{D_{H-1}} + \cdots + h_{D_H} \quad \text{for } t \ge t_0,$

 $h(t) \sim ct^{D_H}$

where $h_0 > 0, h_1, \ldots, h_d$ are certain constant integers. Thus at $t \to \infty$,

coefficients in L which the coefficients of $P_H \in S(t)$ must satisfy.

are independent, and vice versa. We denote by $d_H = d_H(x_1, \ldots, x_n)$ the maximum number of the x_1, \ldots, x_n that are *H*-independent, by $d = d(x_1, \ldots, x_n)$ the maximum number that are independent, and we put

for which

proved that

where c > 0 is a certain constant.

Consider now the set V(t) of all the homogeneous polynomials

Evidently V(t) is a linear vector space over L of dimension

the subsets of the polynomials in these sets for which $P_H(f_1(z), \ldots, f_m(z)) = 0$

 $f_1(\alpha), \ldots, f_m(\alpha)$

We return now to the study of the solutions f(z) of Q where as before $f_1(z), \ldots$, $f_m(z)$ are E-functions. As before let $\alpha \neq 0$, $\alpha \in K$, $\kappa(\alpha) \neq 0$. In difference from the previous notation denote by $D_H(z) + 1$ the maximum number of the functions

 $f_1(z), \ldots, f_m(z)$

that are algebraically H-independent over K(z), by $D_H(\alpha) + 1$ the maximum

that are algebraically
$$H$$
-independent over K .

If t is any positive integer, let $V_z(t)$ and $V_\alpha(t)$ be the sets of all H-polynomials of exact degree t with coefficients in K(z), and K, respectively, and $S_z(t)$ and $S_\alpha(t)$

(z)
$$P_H(f_1(z), \ldots, z)$$

number of function values

and

 $P_H(f_1(\alpha),\ldots,f_m(\alpha))=0,$ (α) respectively. Let similarly

$$v_z(t), v_\alpha(t), \quad s_z(t), s_\alpha(t)$$
 be the dimensions of these vector spaces, and

 $h_z(t) = v_z(t) - s_z(t), \qquad h_\alpha(t) = v_\alpha(t) - s_\alpha(t)$ the corresponding dimensions. By Hilbert's theorem there exist then positive

constants
$$c_z$$
 and c_α such that, as $t \to \infty$,
(A) $h_z(t) \sim c_z t^{D_H(z)}$, $h_\alpha(t) \sim c_\alpha t^{D_H(\alpha)}$.

We finally derive relations between
$$h_z(t)$$
 and $h_\alpha(t)$. For this purpose let

 $\mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \end{bmatrix}$

be the general solution of

$$Q: w'_h = \sum_{k=1}^m q_{hk} w_k \qquad (h = 1, 2, ..., m).$$

With each set of integers h_1, \ldots, h_m satisfying

 $h_1 \geq 0, \ldots, h_m \geq 0, \qquad h_1 + \cdots + h_m = t$

we associate the two products

$$W_{(h)} = W_{h, \dots h_m} = w_1^{h_1} \dots w_m^{h_m}$$

and

 $F_{(h)}(z) = F_{h, h}(z) = f_1^{h_1}(z) \dots f_m^{h_m}(z).$

 $\tau = v_z(t) = \begin{pmatrix} t + m - 1 \\ m - 1 \end{pmatrix}$

products
$$F_{(h)}(z)$$
, and the equations (α) have similarly linear forms in the τ products $F_{(h)}(\alpha)$. In either case there are $h_z(t)$ and $h_\alpha(t)$ such linearly independent homo-

geneous linear forms. The original system Q for w and f implies an analogous system for the vectors

 $\mathbf{W}_{(h)}$ and $\mathbf{F}_{(h)}(e)$. Thus

$$W'_{(h)} = W_{(h)} \sum_{j=1}^{m} h_j w_j^{-1} w_j' = W_{(h)} \sum_{j=1}^{m} h_j w_j^{-1} \sum_{k=1}^{m} q_{jk} w_k,$$

and this is equivalent to a new system

$$Q(t)$$
: $W'_{(h)} = \sum_{(k)} q_{(h)(k)} W_{(k)}$,

where the coefficients $q_{(h)(k)}$ are linear forms in the q_{hk} with numerical integral coefficients. Thus also the $q_{(h)(k)}$ have κ as denominator, and α , by $\kappa(\alpha) \neq 0$, is a regular point also for Q(t). A particular solution for Q(t) is the vector $\mathbf{F}(z)$ with the components $F_{(h)}(z)$ which evidently are Siegel E-functions. Denote by $\rho_z(t)$ and $\rho_\alpha(t)$ the maximal

number of components of F(z) and $F(\alpha)$ that are linearly independent over K(z)and K, respectively. By Shidlovski's first result,

$$\rho_{\alpha}(t) \geq \frac{\sigma}{N} \rho_z(t).$$

(B)

We assert now that

$$\rho_z(t) = h_z(t), \qquad \rho_\alpha(t) = h_\alpha(t),$$

i.e. these ranks are simply the Hilbert functions. The proofs being the same, it suffices to prove the first relation. There are
$$\tau = v_z(t)$$
 components of $F(z)$, and

these satisfy $s_z(t)$ linearly independent homogeneous linear equations. Hence the number of linearly independent components of F(z) is indeed

 $v_z(t) - s_z(t) = h_z(t).$

$$h_z(t)$$
.

Thus, by (A) and (B), $c_{\alpha}t^{D_{H}(\alpha)} \sim h_{\alpha}(t) \geq \frac{\sigma}{N} h_{z}(t) \sim \frac{\sigma}{N} c_{z}t^{D_{H}(z)}.$

$$n_{\alpha(1)} = \frac{1}{N} n_{\alpha(1)} =$$

Allow here $t \to \infty$. Then it follows that $D_H(\alpha) \ge D_H(z)$. In fact,

(C)
$$D_H(\alpha) = D_H(z)$$
.

are algebraically H-independent over K. On the other hand,

LECTURES ON TRANSCENDENTAL NUMBERS

 $P_H(X_1,\ldots,H,z) \not\equiv 0$ such that

is not identically zero, and

impossible.

pendent over **Q**.

that

we can assume that these polynomials are relatively prime. But then $P_H(X_1,\ldots,X_\delta,\alpha)$

 $f_1(\alpha), \ldots, f_{\delta}(\alpha)$, where $\delta = D_H(\alpha) + 1$,

 $f_1(z),\ldots,f_{\delta}(z)$

are certainly algebraically H-dependent over K. Thus there is an H-polynomial

 $P_H(f_1(z), ..., f_{\sigma}(z), z) = 0$

identically in z. The coefficients of this polynomial are polynomials in K(z), and

 $P_H(f_1(\alpha),\ldots,f_{\delta}(\alpha),\alpha)=0$

is a nontrivial homogeneous algebraic equation for $f_1(\alpha), \ldots, f_m(\alpha)$, which is The relation (C) is equivalent to the

FIRST MAIN THEOREM BY SHIDLOVSKI. Let f(z) be a solution of Q in Efunctions, and let α be an algebraic number such that

 $\alpha \neq 0$, $(\alpha) \neq 0$.

Then the number of components of f(z) that are algebraically H-independent over K(z) is equal to the number of components of $f(\alpha)$ that are algebraically H-independent over K.

It is not difficult to show that in this independence K(z) may be replaced by $\mathbf{C}(z)$ and K by \mathbf{Q} . From this first result we can immediately deduce a perhaps even more striking result.

SECOND MAIN THEOREM BY SHIDLOVSKI. Let f(z) be a solution of the inhomogeneous equations

$$Q^*: w'_h = q_{h0} + \sum_{k=1}^m q_{hk} w_k \qquad (h = 1, 2, ..., m)$$

in terms of E-functions, and let again $\alpha \neq 0$ be a regular algebraic point so that $\kappa(\alpha) \neq 0$. Then the number of components of $\mathbf{f}(z)$ that are algebraically independent over C(z) is equal to the number of components of $f(\alpha)$ that are algebraically indeconsider Q: w' = w with the solution $f(z) = e^z$ which is an E-function and is moreover transcendental. Hence e^{α} , for algebraic $\alpha \neq 0$, is a transcendental number by the Second Main Theorem.

For put $w_0 \equiv 1$, $f_0(z) \equiv 1$ and consider the two vectors with the components

 w_0, w_1, \ldots, w_m and $f_0(z), f_1(z), \ldots, f_m(z)$.

Siegel, Shidlovski, and Shidlovski's students like Oleinikov, have applied the main theorems to special E-functions and obtained many striking results. Thus

Of the many other consequences I mention only two. Firstly, any finite number

The result is thus an immediate consequence of the First Main Theorem.

 $w'_0 = 0, w'_h = q_{h0}w_0 + \sum_{k=1}^m q_{hk}w_k (h = 1, 2, ..., m).$

Both vectors satisfy the homogeneous equations

Siegel was the first to show that, for algebraic $\alpha \neq 0$, $J_0(\alpha)$ and $J_0'(\alpha)$ are algebraically independent over **Q**. That the transcendency of e and π is contained in our results is obvious. For

of the integrals $\int_{1}^{1} e^{-z} (\log z)^{n} dr \qquad (n = 0, 1, 2, ...)$

are algebraically independent over **Q**. Secondly, the very complicated number $\frac{\pi}{2} \frac{Y_0(\alpha)}{I_0(\alpha)} - \left(\gamma + \log \frac{\alpha}{2}\right), \quad \alpha \neq 0$ algebraic

is transcendental. Here γ is Euler's constant.

Early in 1967 I thought I had a proof of the transcendency of γ itself. I made a mistake.

OHIO STATE UNIVERSITY COLUMBUS, OHIO 43210