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Same forty years ago, I introduced the classitication of all (real or
complex) transcendental numbers into three disjoint classes S, 7, and U
(xee The detailed treatment of this classification and of an equivalent
one by .1 F. Koksma in Th. Schneider [5], Kapitel TIT). This classification
possessed the Invariance Property; i.e., two numbers which are algebraically
dependent over the rational field Q always belong to the same class.

In the present paper, a new classification will be introduced. T associate
with ecach transcendental number & a positive valued non-decreasing
tunction. O(w &) of an integral variable w = 1, called the order function
ot . For such order functions, both a partial ordering and an equivalence
relation will be defined, and it will be proved that if any two transcendental
nmnbers £ and 5 are algebraically dependent over Q, then O(u|&) and
O vy are equivalent. We may now put any transcendental numbers
mto one and the same class whenever their order functions are equivalent.
In thi~ way we evidently obtain a clagsification of the transcendental
numbers into intinitely many disjoint classes.

The order function O(u| &) is detined in terms of the approximation
properties of & Unfortunately, the actual determination of O(w!&) for
aogiven Soisoa difficult problem, and more work on such order functions
i~ cealled for.

L. The following notation will be used. We denote by ¥ the set of
all polvnomials
plo) = pybppe.op,a" where  p, - 0,

by i the set of such polynomials with integral coefficients. The exact
degrec of a polvnomial in 17 is denoted by

. p) =d(p) = m,

and woe further puat

Lopr = L{p) = po -+ py+ o pls Adp) = Alpy = 2" L(p).
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When the variable is y, we write instead d,, L,, and .1,. The function
L(p) has the two properties

L(p+q) < L(p)+L(qg) and  L(pq) - L(p)L(g),

and analogous inequalities hold for .1(p). In addition, /1 (p) has the basic
property that there are for every integer w > 1 only finitely many poly-
nomials p(z) in W for which

A(p) —u.

The set of these polynomials is denoted by W (u). It contains the constant
polynomial 1, and when « << u’, then W (u) is a subset of W (u').

For any algebraic number &, denote by P(x|&) the primitive irre-
ducible polynomial with integral coefficients and positive highest coeffi-
cient for which

P(£]&) = 0.
We then put

(8 = aP),  LA(E) = L(P), A& =.A(P).

In particular, 9°(&) is the degree of &.

Next let a(w) and b(u) be any two positive valued non-increasing
funetions of u. If there exist two positive integers ¢ and u, and a positive
number y such that

a(u) =yb(u)  for  w = u,,
then we write
a(u) >>b(u) or bu) << a(u).

This relation >> evidently defines a partial ordering. If, simultaneously,

a(u) >>b(u) and a(u)<<<<b(u),
then we write
a(u) > < b(u).
It is clear that this sign > < defines an equivalence relation. With respect
to this relation, the functions a(u) can be distributed into disjoint classes,
and then the sign >> defines a partial ordering of these classes.

2. Let & be any real or complex number; put
1 if & iy real,
2 if & is not real.

For every positive integer w denote by Q(u) the set of all polyvnomials
p(z) in W(u) for which
p(&) # 0.



On the order function of a lranscendental nwmber L)

Thus, for all «, 2(u) is a finite set which contains the polynomial 1, and
2(n) is a subset of Q(w') when u < «'. Therefore the nminimum

o(ul&) = inf [p(&)]
p(xye 2(u)
oxists for all u, satisfies the inequality
0 <o(ulé&) <1,
and is a non-increasing function of w. In the special case when £is a rational
integer, or an integer in an imaginary quadratic field, always
o(u| &) = 1.
On the other hand, as is easily proved, for all other
0 <o(u &) <1
as soon, as  is sufficiently large.
We also introduce the derived function
1) O(u! &) =log{ljo(u|&)} = sup logil/p(s)
px)e ()
which we call the order function of & This function is non-negative and
non-decreasing for all #; it vanishes identically if & is a rational integer
or an integer in an imaginary quadratic field, and otherwise is positive
as soon as u is sufficiently large.
We shall use the notations
E>>q i O(u|é) >>0(uly),
E><y it O@u|é&) = < O(uly).

\f]'

Bvidently & > > 4 defines a partial ordering, and & > <y an equivalence
relation, on the set of all real and complex numbers.

3. A result due to R. Giiting [3] allows to formulate an upper estimate
for the order function when ¢& is algebraic.
Let & be an algebraic number, and let p(») be a polynomial in W.
Then elther
]'(5) =0,
or
max (1, |&)"®

LO(£)2®)o®) I, ()" @t

p(&) =

Assume here, in particular, that p(x) lies in Q(u). Then the first case
is excluded, and A(p) = 2°® L(p) does not exceed . Hence there exist
two positive numbers ¢; and ¢, independent of u and p (#) such that

P& = e i pa)el(u).
We can express this result in the following form.
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Turorem 1. If & is an algebraic number, then
O(u &) << logu.

4. Consider next the case when m is a given positive integer, and &
either is transcendental, or it is algebraic but of a degree greater than wm.
We shall construct polynomials p () in W, with degrees not greater than
m, for which p(&) is small and A(p) does not exceed a given value .

The easiest method of finding such polynomials uses an inequality
from the theory of positive definite quadratic forms

" n
‘ N T o e y I A
Flrgoom) = Z }_, Fypeya, (I = L)
h=1 k=1
Denote by
in
Dy = = o oo oo o 20
F,, ... F,,

nioocr nwn

F, ... F

the discriminant of #. On writing the form as the sum of the squares
of #» linear forms and applying Minkowski’s theorem on linear forms,
it can easily be proved that there exist to F integers =, ..., ) not all
zero such that

(2) F(y, .,y < nDy".

Depending on whether & is real or not, two different cases of this estimate
will be applied.

5. Firstly, let £ be real. Put # = m -1, and denote by s and 7 two
parameters such that

s max (L, &) Y = (1) (- 2) VO D max (1, 1€ 0EY
and hence
t = (1) (m 4= 2)V e D)
Take for £ the positive definite quadratic form
B (s Wyy oeeywy,) = SV (@b & w, EMV b A L
which is easily seen to have the diseriminant
Dy = Lp 0L - 8

.2

LS - Dymax (1, [EDP < ST (- 2)ymax (1, (£

By the property (2). there exists then a polynomial

p(@) = pot-prot ...+ pya™
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with integral coefficients not all zero such that
RITTE A 2 2 2 2
'V( U’(&) '+p0+pl+"'+pm
(1) (- 2)M 0 D max (1, TEPO D — 2 (-1

Since plr) = 0, and since & is not algebraic at most of degree m, this
implies that
0 < (&) < (m+ 1)1 (mk 2)V R D (L, (&) g
< (m1)EEYE (e 2y B max (1, (&Y™
and therefore
(3) < p(&)] < (rm+2)"Ttmax (1, &)t
It further follows that also
0 < potpit...p), </(m+1),
whence. by Cauchy’s inequality,
(4) 0 < L(p) <t

Secondly, let & be a non-real complex number, and assune now that
the parameters s and ¢ are such that

s nuax (L, (&) 720D = (m 1) (e 2)M0 T max (1, [§])0 s

hence that
t = (m-1) (m A 2)Mo D,

The case m = 1 is now trivial and will be excluded.
We split the powers

EI‘T: = Jptip, say (b =0,1,...,m),
into their real and imaginary parts. The positive definite quadratic form
v A . 1, 12 2 2 2
Flageiy, ooy @,) = 8" Heg+a &+ ooFa, " P +ay+a1+.. .+,

in oy, 2., 2, can easily be shown to have the discriminant

H
1 2(m4-1) a D) 2
Dy =1+ \ (2t i) 407 ; (A My = Py M1ey)
k =0 0<iky <kg=sm

where evidently
‘[)l' < 2(m1 1)(/”2/_{_ ﬁ)) lnd‘X( , ié_—!)xlm,.

We find thus just as in the real case that there exists a polynomial
(@) = Pot P12+t ... Py ™
with integral coefficients not all zero such that

S (E) P PR i ph < (m A1) (m -+ 2)P P max (1, | &)Y
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As in the real case, this inequality implies that simultaneously

() 0 < [p(£)] < (m+1)"2(m 4 2) max (1, &))" e D"
and
(6) 0 < L(p) < t.

On combining the two results (3), (1) and (H), (6), we have thus
proved:
Let m = o(&), and also m < 0°(&) if & is algebraic; let further

(7) 1 :2 (7n+2)(u1»i—2)/(m+1)'

Then there exists a polynomial p(x) with integral coefficients satisfying
(8) dp)<m, 0 <L(p)<t, hence also A(p) < 2"1,

and

(9) 0 < W(f)‘ < (,m/_!_2)(711/~}—1)/0(é)nla'x(1’ i:5!)711,{7{(7/1«:—1),"0(5)}4;1'

6. Assume now, firstly, that & is algebraic but is neither rational
nor lies in an imaginary quadratic field. Choose m = ¢(£), and allow
1 to tend to infinity. We obtain then infinitely many distinet polyvnomials
p(x) with integral coefficients for which

Fmax (L, [E)t1 < 2-3%max(1, [&)A(p)~ " if &is real,
0 < ‘p(&‘)l < 3/2 n24—1/2 4 - =“1\2 —1/2 &3
4*Fmax (L, [&)°t 17 < 2"max (1, (&))" A(p) if £isnot real.
Thus, in either case, for all sufficiently large u,
O(ul &) = eslogu
where ¢, > 0 depends only on & Hence, by Theorem 1, we find as 2 first
result.

TuroreM 2. If & is algebraic, but is neither a rational number yior lies

o an imaginary quadratic field, then
O(u! &) > <logu.

This result remains valid in the excluded case provided & is not an
algebraic integer.

Secondly, let & be transcendental. We now choose

t — 27)@
Then, for sufficiently large m, the condition (7) is satisfied, and

A(p) < 4™.
TFurther

0 < [p(&)] < (mo2) N Omax (1, ||y e < oo

as soon as m is sufficiently large because o(&) < 2.
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This means that for every sufficiently large positive integer there
exists a polynomial p(z) == 0 with integral coefficients for which both
0 < |p(&) <e 489 and  A(p) < u.

Here ¢, > 0 is a certain absolute constant. From this result, the following
theorem follows at once.
TueorEM 3. If & is transcendental, then

O(u| &)y >> (logu)?.

7. We proceed now to the study of the order functions of two trans-
cendental numbers & and » which are algebraically dependent over the
rational field Q.

3v this hypothesis, there exists a primitive irreducible polynomial

M N
A, y) = Z N Ayt
0]» 0

with rational integral coefficients and, say, of the exact degrees M = 1
in # and ¥ > 1 in y, such that

A&, ) =
From this we shall deduce that & > < .
Put
N
A,(y) = ZAlm-yk (7L:0717“'9M)?
so that o

M
y 1
Aw,y) = ’%Ah(ym’*.
By the hypothesis,
Ay (y) #0,
and
(10) max d,(4,) = N.
0<h<<M
We shall use the notation
¢ = max L,(4,).
O<<h<M
8. The equation 4(&,#) = 0 can be written in the form
~4M(77)§M = ’"{A—()(7I)+Al("l)5+--~“:‘A4117~1(”I)5M—1}-

We multiply this formula repeatedly by & and each time eliminate the
ternt in 57 on the right-hand side by means of the formula. We so obtain
an mfmmu sequence of equations

M-—1

(11) Ay (et = Ya,,,m)s (h=0,1,2,...).
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Here the a,;,(y) denote certain polynomials in y with integral coefficients
which are defined by the initial values
Ay it h=1Fk
12) @y (y) = o and  k —=0,1,.... 4 1,
( ) i \Y ) { 0 it oAk ? b ’ ’
and, for k = M, M+1, M+2,..., by the recursive formulae
. ’—411)(;’/)“3[—1,7:(1/) it h =0,
(—1'3) Ay 1 ;-1(?/) = o PR
— Ay )y () +Aa () (y) T ho=1,2, ... U —1.

From these formulae and from (10),

(14) 0,(a) < kN for all & and k.
Further, for all &, by (12),
La)y<CF itk =0,1,.... M—1,

and by (13),
Ly(a, ) 20 max L,(a,) i k> M-—-1.

0<<h<<M-—1
It follows therefore by induction for & that
(15) L,(ay) = (20)"  for all & and k.

It is convenient to replace the last formulae by slightly different ones.
Denote by m any positive integer not less than M — 1. The formulae (11)
imply that also

M1
(16) Ay = N By (& (k=0,1,...,m)

fe==0

where the B, (y) denote new polynomials in y with integral coeificients
defined by

(17) Byp(y) = Ay ()" " an ().
Therefore, by (14) and (15),
(18) 0,(By) =mN and L, (By) < (20)"  for all & and /.
9. Let
p(@) = po-t+pe+...4+pya", where p, #0.
be any polynomial in » with integral coefficients, of the exact degree
0,(p) = m.

Here it is assumed that
m=M—1.
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Therefore, by (16),

M—1
Ay ()" p (&) = S Zpkbhl (1)
h=0 k=0
say
M—1
(19) ()" p(E) = Ny (n) &
h =0
Here we have put
(20) b)) = X piBuly)  (h=0,1,..., 1),

k=0
so that also the b,(y) are polynomials in y with integral coefficients.
From the estimates (18), it follows immediately that
(21) d,(by) <mN and L,(b,) < (20)"L,(p) (h =0, LM —1).
Denote now by ¢(y) the resultant relative to . of the two
polynomials

A, y) = Ag(y)+ Ao+ ..+ Ay ()"
and
AN @, ) = b)) by ()b by ()™

This resultant is given explicitly by the determinant

Ao(y) Ay(y) ... Ay (y) ... 0 I
A —1rows
0 o Ao(y) As(y) .. J
(22) qy) =
boly) buy) e b)) 0 ]
: ’ . ’ : M rows
|
F0 coboly) o by bu 1 J

Henee ¢(y) is a polynomial with integral coefficients. By (10)
and (21),
O (q) < (M—1)-mN-+M-mN
and therefore

(23) d,(q) < m2M—1)N.
It follows further from the trivial estimate for a determinant and from
(21) that
L, (g) < (2M—1)1(20)" =D (20" L, (p)
and hence
(24) L,(g) < (2M —1)!120)" VL, (p)
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10. Next multiply the 2nd, 3rd, ..., (2M —1)st columns of the
determinant for ¢(y) by the factors

2 2M—-2
wyaty o, MR

respectively, and add to the first column. The new first column becomes
then
Ao y), Alroyye. oo Alw, y) a2 A% (@, y), A" (@, )@, ..., A" (@, )™ L

Here put
v=2£& and y =9.

Then

Az, ) =0 and  AT(&, ) = Ay ()"p(8),
whence
(25) q(n) = Ay ()" p(&)q*(&,n),

where ¢*(£.7) denotes the determinant obtained from that defining ¢(y)
by replacing its first column by the new column
0,0,...,0,1,& & ... &t

and substituting 5 for y. Thus ¢*(&, %) can be written as a polynomial

in & of the form

(26) q(E ) = gy () g () &+ dhrma ()

Here, for # = 0,1,..., M—1, the ¢;(y) denote the cofactors of the lust

M elements of the first column of the determinant for ¢(y). They are

thus polynomials in y with integral coefficients. Just as for (23) and (21),

we find the estimates

@7) 9,0¢) 2m(M—1)N and  L,(gy) < (2M—2)1 (20" NL, (p)*
(h=0,1,..., M—1).

EJI—l

11. The resultant ¢(y) does not vanish identically because A(w, )
is irreducible and has the exact degree M in x, while A" (»,y) has at
most the degree M —1 in this variable. The transcendency of 7 implies
then that

q(n) #0.

By (23) and (24),

and also

A (p) = 2" Ly(p).
Ience there exist two positive integers €, and /', depending only on
¢, M. and N, and so only on the polynomial A (x, y), such that

(28) Ay(q) A it Ap) =T
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Next put
Ay =c¢;, max(l, &) =cg, and max(1l, [5]) = c;.
By (26) and (27),
(& )] M) (@D —2) (20O L, (p) 7 O,
so that, by (25),
%’Q) | e Me N2 M —2) 1 (20)M N L (p) e DN

By this inequality, there exist two further positive integers ¢, and /',
which depend only on the polynomial A(x,y) and on the two numbers
& and 5 such that

(29) qOn) < A(p)2p (&) i Ay(p) = L.
12, Assume now that the parameter « is not less than
1" = max ([, [,).
Further choose in £(u) a polynomial p(x) satisfying the equation
log{1/p(&)] = O(ulé).
By this choice.

A (p) < w.
Further, by (23).

(30) A,u('l) '6017
and by (29),
(31) )] [p(§)u.

We found already, in the proof of Theorem 3, that
log [1/p (&) > eq(logu)?,

where ¢, > 0 was a certain abgolute constant. Hence, if /') is a sufficiently
large positive integer, then, by (31),

(32) log Ug(n) = logU/p(&)) = O &2 i w1,

On the other hand, ¢(y) = 0, and so, by (30), ¢(y) belongs to the set
Q@' But then, necessarily,

0w 1) = log|1/q(n),
so that, by (32), we arrive finally at the estimate

Ot gy L0 & it w1
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Naturally, on interchanging & and #, we also obtain an analogous estimate
b - 1 . -
OWCLIE) = 30!y i w=1I7.

where (7 and /7 are two further positive integers.
We have thus established the following Invariance Propeity.
THrOREM |. Let & and i be lwo transcendental nwmbers which are
algebraically dependent over the rational field Q. Then

O &) ><O(uly) and therefore & > <.

13. Denote by 7 the set of all transcendental numbers. Let us then
subdivide 7 into disjoint subsets or classes Z, H, 7, ... by putting nuni-
bers & and % into the same class if and only if & > < 4. Thus, by what
has just been proved, numbers which are algebraically dependent over
belong always to the same class.

There are evidently non-countably many positive valued non-decre-
asing functions a(w), b(u), ... of the integer « > 1 no two of which stand
in the relation

a(u) > < b(u),

but it is not evident which of these functions are order functions of trans-
cendental numbers. It is further clear that there exist transcendental
numbers & (e.g. Liouville numbers) for which O(u | &) tends arbitrarily
rapidly to infinity; but it does not seem to be easy to find the exact size
of these order functions. Thus the following two problems remain open.

PrROBLEM 1. Do there exist non-countably many distinct classes
S H,Z, ... 2 (Y

Provrem 2. Let a(u) be any positive valued non-decreasing fiunection
of the integer uw = 1. To establish necessary and sufficient conditions for
the existence of a number Ee7 such that

a(u) > < O(ulé).

In addition to the equivalence relation > < we had also defined
an order relation >> for both functions and numbers, and it ix easily
seen that it can be extended to classes. With respect to this order relation,
the following two questions arise.

PrOBLEM 3. Does there exist a paiv of wwmbers & and v in T such that
neither & >>y nor & << y?

ProvrLeM L. Does there exist a number Ze7 such that

Sy

>0 forall  teT?
(i) Note added on January 12, 1971, 8. Swicrezkowski has recentlyv proved
that the answer is affirmative.
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The following metrical question also has some interest.

ProsreM 5. To decide whether there exist, and if so, to determine, two
positive valued non-decreasing functions a(u) and b(u) of the integer u > 1
such that

(i) O(u| &) << a(u) for almost all real numbers e,
and
(i) Ol &) << b(u) for almost all complex numbers e,

and that, in addition, a(w) and b(u) increase as slowly as possible.
I conjecture that this problem has the solution

a(w) > < (logu)?,  bh(u) > < (logu)?.

The actual determination of O(w &) for any given £e7 presents
a difficult problem which has as yet not even be solved for the two
classical transcendental numbers e and =. For the order functions
of these two numbers the best lower bounds known seem to be those given
in Theorem 3.

The best upper bounds known at present are those due to N.I. Feld-
man ([1] and [2]) which state that

O(ule) << (logu)*(loglogu)?,
O(u|=) << (logu)?(loglogu)?.
We had defined the order function O(u|&) in terms of the functional

A(p) = 22 L(p).

No essentially different results are obtained if 2 is here replaced by any
other constant greater than 1. It may, however, be useful to consider other
functionals.
Just as in Koksma’s approach ([4]) to my old classification, one can
replace the order function O(u] &) by a new function
0" (u| &) = sup log{l/|&—al}

aeQ¥(u)

where Q%(u) denotes the set of all algebraic numbers « for which
a % & and  A%a) < w.
However, both Koksma’s work and a recent paper by Wirsing ([67])

suggest that the results will be completely analogous to those for
O(u] &).
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