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On a class of diophantine inequalities

Kurt Mahler

Dedicated to B. Segre, on his 70th birthday, 6 February 1973.

As a special case of more general results, it is proved in this
note that, if o is any real number and ¢ any positive number,
then there exists a positive integer X such that the

inequality
3\/
|x(2) "y, -a] <8
has infinitely many solutions in positive integers #h and Yh .

The method depends on the study of infinite sequences of real
linear forms in a fixed number of variables. It has relations
to that used by Kronecker in the proof of his classical theorem

and can be generalised.

For real o put

el = min [o~y| »
y=0,+1,+2,...

so that |la]| denotes the distance of o from the nearest integer and
hence that
< | 1.
0= Jlall 3.
By HO we understand a fixed strictly increasing infinite sequence of

positive integers & (H usually will be the set of all positive

0
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integers), and H denotes some infinite subsequence of H. , not

0

necessarily always the same.

2.

Let r be a fixed and 7 a variable positive integer; let further

Sn be the set of all r-vectors X = (xl, ey xr} with integral
components satisfying

1= max(lxl!, cees [xrl) =n .

Thus Sn is a finite set, and all vectors in Sn are distinct from the
zero vector
o= (0, ..., 0) .
Next consider an infinite sequence of r-vectors
= gy oo q,) (hoen)
with real components and the associated linear forms

Lh(x) =,z + ...+ ., [h € HO)

in X . Then put

M (n) = min L, (x)|| (» €& )
h ﬁgﬂ h 0

M(n) = 1lim sup M, (n) .

hroo

heHg

It is obvious that

and hence that also

For n =2 3 these upper bounds for Mh(n) and M(n) can be improved.
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For this purpose, denote by y a further integral variable.
r + 1 linear forms
-1 -1 »

{ . {1
nox veey M . nota, e, ... vt a, X - g
1’ ’ Ly o 1t Gty y)

249

The system of

in Lys eens Ty y has the determinant -1 . Hence, by Minkowski's

r
Theorem on linear forms, there exist integers
S ey Xy Yy

“hr? Yh

11

not all zero, which in genersal will depend on h , such that simultaneously

lz, 1y «ovy | < + ..t a o, - T
max(lzy > oos g ) s ns gy v v ay syl < € E)
Here at least ome of the first r integers
S 2
does not vanish. For otherwise Yy # 0 , whence
1=yl <n =1,
which is impossible.
The vector
X, = (xhl’ R xhp)
therefore lies in Sn and in addition satisfies the inequality
. -r
<
Iz, ()0 < n7" (n € Hy)
From this it follows immediately that
. . =T
(1) 0= Mn) <n (h €Hy)
and hence also that
(2) 0=Mn)=n .
On the other hand, since obviously Sw < Sn+1 , it is clear that
M, (1) = M(2) 2 M4(3) 2 ... 20 (hed),
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from which it is easily deduced that also

ML) = M(2) = M(3) = ... 20

The definition of M(n) as an upper limit implies that there exists
a subsequence H of HO such that
lim Mh(n) = M(n) .
hroo
heH
Here, to each suffix h in H , we can find a vector Xh in Sn such

that

M, (n) = lIL, (x, )1l (n €B) ;
note that Xh need not be the same as the vector Xh constructed in §3.

As & runs over H , Xh is restricted by the condition of belonging
to the finite set Sn . Therefore, if necessary, H can be replaced by an

infinite subsequence which we call again H such that, without loss of

generality,

X =X, for all h €H
is a fixed vector in Sn independent of A ; naturally,

X # 0 .
Since this vector has the basic property that
(3) lim HLh(x)H = Mn) ,
the following result has been established.

LEMMA 1. For every positive integer n there exist an infinite

subsequence H of HO and a constant vector X 1in 5, with the property

(3).
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5.
In this lemma, H will in general be a proper subsequence of HO as
the following example shows.
Fix »n and choose r =1 so that ah and X are now scalars ah
and « . As the linear forms take

fx if h is even,
Lh(x> =
x/2 if h is odd.

In this example, M%(n) evidently vanishes for even h (we may put

z =1 ), but is positive and indevendent of %A for odd % . Hence also

M(n) is positive. Thus, if Hy 1is the set of all positive integers h, H

in (3) essentially (that is, except for possibly finitely many even

numbers ) is the sequence of all odd integers.

6.

Consider again the general case, but assume that, for a certain n ,

M{n) = 0 . Since M%(n) >0 for all h € HO , it is clear that now the

upper limit in the definition of M(n) becomes the Iimit, hence that (3)
takes the form
(4) Lm L, (Ol =0
hrweo
]’ZCHO
Denote by o an arbitrary real number which is not an integer. The
relation (4) implies that
lim 1L (x)=ofl = llall >0
hsoo
}’l‘HO
This formula suggests the problem whether there exist an infinite

subsequence H of HO and an integral vector X distinct from X such

that
1lim HLh(X)—aH =0 .

Jso0

hel
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The answer to this problem depends very much on the specizl forms Lh and

the sequences HO and H .

A positive answer can be given in the following trivial example. Let

r=1 and n =2 ; let HO and H be the sequences of all positive
integers and of all odd positive integers, respectively; and let further

= 4
Lh(x) sx  for h € HO .

Since L}(2) = 1 , evidently
(4

On the other hand,

A negative answer holds in the following rather more interesting

example. Let again » =1 , and let H. be again the sequence of all

0

positive integers. Assume that the forms Lh have the property

(5) lim L, (1) =0 .
)
hely
Then obvicusly also
(6) 1lim ﬁLh(m)H = 0 for every integer x ,
ho0
héﬁg
and hence there cannot exist a subsequence H of HO and an integer X
satisfying
(7) lim L, (X)-of = 0
k,,m ¢
heH

unless @ 1is an integer.

7.

A simple example in which the condition (5) is satisfied and therefore

also the conclusion about (7) is given by the linear forms



[
N
L

[0}
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= hlex for h € H_
0

sequence of all positive integers.

or interest is, however, the sequence
(8) [i(m} = for h € H_
71 U

where 8 > 1 is a constant. A

theorem to that the limit

equation

the following two

if and only

the condi

hold.

g () . ; o , :
(1) 8 = 8" 4is an algebraic integer of some degree m 2 1 such
L. . . (2) (m) ;
that all its algebraic conjugates 07", ..., 0 are less

than 1
generated by © .

are satisfied. By

(i¢2) If o <% i any subsequence of H, , and X

any integer,

implies that o 1s an integer.

N

£ {6, A} is a Pisot pair, then by (6) the forms (8) satisfy

(9) Mn) =0 for all n =1 .

This result has a converse. For assume that {6, A} is not necessarily a

Pisot pair, but that (9) is true. This equation (9) is equivalent to
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(10) lim min ernxﬂ =0
B =l ,E2,... i
hely

Now for every real number o and for every integer g ,
lgall = |gl.llal ,

hence

Hn!AGhH = nl min X6l
x=t1,%2,...,tn

because all factors « are divisors of #n! . The equation (10) implies

then that

lim anxehu =0
oo

This, however, means that {6, n!A} and hence also {6, A} are Pisot

pairs. Thus the following result holds.

LEMMA 2. Let 6 > 1 be an algebraic number and X a positive

nunber, let again HO be the sequence of all positive integers, and

let

Lh(x) = 20’ for h €H.

Then 16, A} is a Pisot pair i1f and only if

Mn) =0 forall n=z=1.

8.

We return to the general case of §2, but assume now that for a certain
value of n
Mn) >0 .

Denote by X the constant vector in Sn given by Lemma 1 and for which

(3) Lim [[L,, (X)]| = M(n) .
hi-»o0

held

It follows that there exists an infinite subsequence of H which we call



Diophantine inequalities 255

again H such that

%M(n) < IILh(X)” < %M(n) for all h € H

In explicit form, X = ﬁr xr) , and there exists to each- h € H

1, ey

an integer Yy, such that the sum

= el + -
Sp = Hn* * Dy T Yy
satisfies the equation

|sh| = ”Lh(x)”

and therefore also the inequality

(11) 2M(n) < |sy| < 3M(n) for a1l h €H .

9.

Next let O be an arbitrary real number, and let Yy be the unique

integer for which the real number
B=a+y
satisfies the inequality
2 )
(12) 5 < B = 3.

The integral multiples

of s, form an arithmetic progression of distance |sh| >0 . By (11),

every open interval of length %M(n) contains then at least one element of

this progression.
We apply this property to the open interval
from B - %M(ﬂ) to B+ %M(n)
of this length and deduce that

for every h € H there exists an integer 2y, such that

—%M(n) <83y - B < %M(n) .

h
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Here B =< g and M(n) = % , S0 that by (11),

2
o, |« 222 svantn)
and therefore
3
(13) EARS ey

On the other hand, B > % , and so again by (11),

-2 2.1
81,2, > B 3M(n) z 5 >0,

whence also

zh ¥ 0 .

In this construction, 2y, is a function of & € H which, by (13),

has only finitely many possible values. Since H may, if necessary, once
more be replaced by a suitable infinite subsequence, we may without loss of

generality assume that

By = 2 for all h € H

has a fizxed integral value independent of h% , where by (13) and (1k)

3
Mn) °

(15) 0 < 'zl <

10.
Put finally

Xl = LBy eens X} = %3, Yh =YR Y -

Then X = (X', ey X}) is an integral r-vector independent of % such
that

a6) 1= mex(1x L e 10,1 < 5y

while Yh is an integer which in general depends on % . In this new

notation, the lower and upper estimates for Shzh~m 8 take the form
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—-23-M(n) <L (X) - ¥ - a<§M(n) for all h € H .

h
Since %M(n) < % , this is equivalent to

(1) 12, (X)-al < %M(n) for all h € H .

Thus the following result has been obtained.

LEMMA 3. For a certain n =1 let M(n) >0 . Then, to every real

number o , there exist an infinite subsequence H of Hy and a constant

integral vector X such that both (16) and (17) are satisfied.

This lemma becomes particularly interesting when M(n) is positive

for all positive integers n . For, by the earlier estimate (2),
1lim M(n) = 0 .
n- >

Therefore, for sufficiently large #n , the right-hand side of (17) can be

made arbitrarily small, giving the following result.
THEOREM 1. Let »r =21 be a fized integer, and let Hy be a
strictly increasing infinite sequence of positive integers. Associate with

each h in HO a real linear form

Lh(x) = @ teeota x o,

and assume that the upper limit M(n) , as defined in §2, is positive for

every positive integer n .

Then, given any real number o. and any positive number & , there

exist an infinite subsequence H of Hy and an integral vector X # 0
independent of h such that

HLh(X)-aH < 8§ for all suffices h in H .

11.

We combine this theorem with Lemma 2, taking r =1 . Let 6 and A
be as in Lemma 2, but assume that {6, A} is not a Pisot pair. Then M(n)

is positive for all »n = 1 , and Theorem 1 gives the following consequence.

THEOREM ‘2. Let 6 > 1 be an algebraic number, and X > 0 a



258 KUurt Mahler

constant. Assume that at least one of the following two properties is not

satisfied.

() © = 8(1) is an algebraic integer of degree m = 1 such that

o2) .., e

all its algebraic conjugates have absolute

values less than 1 .
(i1) X lies in the algebraic number field Q(6) generated by 6 .

Then, given any real number o and any positive number & , there exists a

positive integer X such that the inequality
e -al < 6
has infinitely many solutions in positive integers h .

By way of example, this theorem can be applied to each of the

inequalities

et

where in the last inequality A wmay be an arbitrary positive number.

<6, e+ =all <5, @) -al <5,

12.

We conclude this note with an application of Theorem 1 when » is an

arbitrary positive integer. For this purpose, assume that

= + ...
B0 = am ¢ g,
does not depend on % . Any relation M(n) = 0 where % =21 now implies

that the numbers

al, cevs Qs 1

are linearly dependent over the rational field Q . Conversely, if these

numbers are linearly independent over Q , then M(n) is positive for all

n>1 . In this case it follows from Theorem 1 that for every real number
o and for every positive number & there exist r integers Xl, e Xf

not all zero such that

MaIXi L arX?;uH <68 .
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We obtain thus a rather special case of Kronecker's Theorem.
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