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In an important paper of 1965 (Canadian Journal of Mathematics, 17,
pp. 616-626), A. Baker for the first time established lower bounds for prod-
uets of the form

Iy  |me, ... o (0 By +Fo, By - o w B
and Y Y B~y Y B — Yl

Here £, K,, ..., E, are distinet rational powers of e, with ¥, = 1 in the
second expression; the @’s are distinet integers not zero, while the y’s are
integers where %, > 0, and k> 2. These lower bounds involve positive
constants depending only on & and the F’s and are not given explicitly.
The method depends on an ingenious generalization of that by C. L. Siegel
in his classical paper in the Abhandlungen der Preussischen Akademie der
Wissenschaften of 1929, No. 1.

I try in the present paper to carry Baker’s investigations a little
further by establishing lower bounds for the expressions (I) which are com-
pletely explicit and do not involve any unknown constants; the results
are contained in the Theorems 1 and 2 and their corollaries. It is highly
probable that better estimates can be proved if explicit formulae for Baker’s
approximation polynomials are used. Such formulae have been obtained
recently by A. van der Poorten at the University of New South Wales.

1. This paper makes use of the following well known theorem.
LeMMA 1. Let

(9) (i =1,2,...,M;j—1.2,...,N),

where M < N, be a matriz of integers, and let

N
a; ‘_:Elgij' (i =1,2,..., M).

J=1
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Then there exist integers xy, ..., €y not all zero such that
N .
\ 2 9% =0 for i =1,2,..., M;
J=l
max (&0, ..., [@y]) < (@ ... Gy) &,
Proof. Put
G = [(G, ... Gy)" N0,

where [s] as usual denotes the integral part of s. There are then (G +1)¥
distinet vectors @x = (x,,...,xy) with integral components wx,, ..., Ty
satisfying

0<a, <G (j=1,2,...,N).

With each such vector x associate a second integral vector y = (Y, ..., Y1)
where

Y, :Zgﬁxj (¢ =1,2,..., M).
i=1

Further define for each suffix ¢ = 1,2, ..., M two non-negative integers
n; and p; by

N N
’ ~ \ | , ) - \ | . P E
;= 2, il P = ‘_\_J gyl (0 =1,2,..., M).
j=1 i=1
!I1jj< ] g’,ij>()

Then evidently

and for all vectors y,
—n; G <y, < +p,G@ (¢ =1,2,...,M).

This means that each component y,; has at most n,G + pLG +1 = 6,6+
-1 possibilities, hence that the vector ¢ has at most (GG +1) ... (GG +1)
posslblhtleq But

(G+1)Y = (GG )N (GG Gy,
(GG ) L (GG ).

Hence there are more distinet vectors a than there are distinet vee-
tors y. 1t follows that a certain pair of distinet x-vectors, &’ and ' say,
generate the same vector y. This implies that their difference & = a’ —ax"
is not itself the zero vector, but generates the zero vector y = (0, ..., 0).
Sinee the components @, ..., xy of x evidently lie between —G and @,
the vector a has the asserted properties.
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2. Let a,, ..., a,, where k> 2, be finitely many distinct integers,
and let a be a positive integer satisfying

(@yay, ..., a;) = 13
let further
A =max(lal,...,|la]) and B = 4-+a,
so that
A=1, B=2.
Put
B, =e¢nl, ... B, = W,
Then E,, ..., B, are distinet positive numbers, and hence the exponential
Sfunctions
B, ..., B},
are linearly independent over the field of rational functions of z.
Next denote by 7, ...,7,, R variable positive integers, and put
Fo== AX(Fyy oeny P)y  Fo == MIN(Fy, .0, ),
m =71+ ..+ r+k—R, n=r+...+r+k=m+R.
It will be assumed that

E<R<r,+...+r,+k—1, hence that 1 <m=<ri+ ... +r,<Fkr.

Since the following three expressions will oceur frequently, the follow-
ing abbreviations will be used,

. k(k—1) * m(m—1) « 1
N == e, TR ey _[ﬂ == T
2 2 it

3. With each pair of suffices (¢, J) satisfying 1 <i <<k, 7 = 0 asso-
ciate two coefficients p; and p(i, j) related by the equation
7!

p(“]) =

. "]7 Dij -

Both coefficients are assumed equal to zero whenever (i, j) does not belong

to the set S of all pairs (¢, 7) satisfying 1 <i <k, r—r, <j<r.
With these coefficients form now the & polynomials

P,(z) = 7! N fi - pli, g8 (1 =1,2,...,k)
T\ ,;J pl] j, ,p 7] ( ) 7 b
i=0 T d=0
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and the entire function

k
e

Py(2) B3,

=1

say with the power geries

d J

1
F(z) = ! —
7(2) fl?ofh

where the coefficients f), are defined by
(1) a"fy “ZZ()@Z‘ Talp;  (h=0,1,2,...).
1=1 jJ=

Denote by G, the sum of the absolute values of the coefficients of all
the p;; in this equation. Thus

Gh +1 Z

i=1j=0

Jk‘

k
h-;) _ [P h
()(al ——z(l“ie*a)
and therefore
(2) Gy <kB"  (h=0,1,2,...),
whence, in particular,
(3) G...Q, < kK"B™.

4. Apply now Lemma 1 to the system of m homogeneous linear
equations

fo=0 (h=0,1,...,m—1)

for the n unknowns p;; for which (4, j) lies in S. In the notation of the lemma,
M = m and N = n, while the maxima @; satisfy the inequalities (2) and
(3). Since n —m = R, the lemma shows that

There exist integers p;; not all zero, but equal to zero whenever (i, j)
does not lie in S, such that

(4) fr = for  0<<h<m—1; max [Pyl < (™ B™)
Next, in the sum defining P;(z),
7! r .

where it suffices to allow j to run over the interval » — », << j < » and therefore

(r—pt<<wt.
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Since

it follows then from (4) that also

”

(5) Nl Pl 2 (BB (= 1,2, .., k).
]:0
From their construction, the p (i, j) likewise are integers, and they vanish
whenever (,7) does not lie in S.
From (1), (2), (4), and the definition of &, , it finally follows that

(6) Sl < B(Ba)"(E™ BT for b = m.

5. By construection, not all the polynomials P;(2) vanish identically.
Denote by 44, ..., iy, where 1 < i < k, all the distinet suffices ¢ for which
P,(z2) = 0. Then, by what was S(le in § 2 about the exponential functions
B, ..., B, the K functions

91(2) =Py () B;, ..., gx(?) =P (2) B,

are linearly independent over the comples number field so that the Wronski
determinant

?gl(z) 92(%) e gx(2)

FAC R AC! g (2)
WE =g a gic(2)

L e e e e e e e e e e e e e e e

FEVE ) g0

does not vanish identically.
Let now D be the differential operator

p_
ode

By the detinition of ¥, and by a well known symbolic relation,

99 (2) :(-%)](P,l(z) ) E“(D+ (a,/a) ) Py (2)
Put therefore
() Py(2) = (D+(aa)Pyz) (i =1,2,..,k; j=0,1,2,...)
so that
90z =Py (B, (L =1,2, . K =0,1,2, ...

5 — Acta Arithmetica XXVII.
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It follows that
Wi(z) = (H; E?-g ..... i) w0 (?)

where w(z) denotes the new determinant

Pil,o(z) Piz,o (®) coo Py o(2)
0 (2) EPZ'I,I(Z) Z)i2,1(z) l)iK,l(z) E
| f
R I |
Lo () P () oo Poere1(2)]

which naturally also is not identically zero.

In this determinant w(2) multiply, for { = 1,2, ..., K, the [th column
by the factor K}, and afterwards add the 2nd, 3rd, ..., Kth new columns
to the first new column. This leads to the formula

F(2) NG
| ¥ > |
w(z)EfLI :iﬁ (Z) '112 1(2’) I'LKl(”) t
I t
‘ .
I
FED(2) P k1(2) Py k1 (2)]
because
K
PO (z) = ZZP,-Z,,-(Z)EZ (j=0,1,2,...).
=1
On multiplying in this determinant the successive rows by the factors 1,
z,2%, ..., 257", respectively, we finally arrive at the equation
F(z) P;, 40) e Pth,o(z)
- #(») 2P, 1(2) s 2P 1 (2)
(8) NV (o) B = f 2" () Sl a(2) . &P o (2)
R K e (2) e P e ()

6. By (7), all the P;(z) are polynomials in z at most of degree r, and
hence w(z) is a polynomul in 2z at most of degree Kr. On the other hand,
in the determinant (8), all elements of the first column have at 2 = 0
a zero at least of order m, while, for 1 =2,3,..., K, all elements
of the Ith column have at z = 0 a zero at least of orderr—ril, respectively.
Hence w(2) itself has at 2 = 0 a zero of order not less than

Z(T—*T K(K~1)
) .
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Since w(z) = 0 is at most of degree Kr, it follows that we can write
w(z) = 2"11(2)
where I/(z) = 0 is a polynomial in z at most of degree s — Kr —w. Nat-
urally, s cannot be negative.
Let us for the moment, without loss of generality, assume that r = r,;
this assumption can always be satisfied by a suitable renumbering of the

pairs of integers (a,, ), ..., (a;, r;). Let us further from now on always
assume that

(A) ro= R4+K —k+1.
The first assumption insures that, in explicit form,
k K
: Q . Q K(K—1)
s =Kr—[r+ Mo h—R) — N (repy) 4 o )
(9) s = Kr (7’+ % ¥k R) ?:_21 (r—ry) + 3
k
\ K(K—1
= Sj Z r,—k 4R+ —-(~~2w~~)
=‘ T=2

The hypothesis (A) implies that
K =k.
For if K < k—1, then there exists a suffix I in the interval 2 < I <k

such that
K k
D= D < —r < —R—K k-1,
=2 )

and hence it follows from (9) that s << —1 which is absurd.
Since then K = k, and since by our notation we may take ¢, = 1,

we obtain
K I
Z iy = Z "
=2 i=2

so that the relation (9) leads to the following result.

LeMyMA 2. Assume that the condition (A) is satisfied. Then none of the
polynomials

Py(2);y -ey Prl2), w(2), 11 (2)
vanishes identically. Here w(z) is the determinant

Pyy(2) Pyy(2) s Pry(2)

...................

Pl,k—~1(z) Pz,k~1(z) cor Pryi(2)
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and
w(z) = 2"l(7)
where 11(z) is a polynomial at most of degree
s =R-+-E"—k.

7. The polynomials P;(2) have been defined by the equations (7).
These equations show that they have rational coefficients, hence that the
values P;;(1) are rational numbers. In terms of these polynomials, the de-
rivatives

FO(z) = ,\w JOE (j=0,1,2,..)

‘a——*l

are linear forms in the & exponential functions Ei, ..., F;.

By Lemma 2, the determinant w(z) of the first k of these linear forms
is not identically zero and has at z =1 a zero at most of order
s = R-+L* —k. Let it in fact have a zero of the exact order ¢ so that

(10) w(l) =w'(1) = ... =w" V(1) =0, w(1) 0, where 0 <o <s.

On solving the first & linear forms
k
FO) = M Py(a) B (j=0,1,...,k-1)

for E7, we obtain equations of the form
k—1
w(@ B = N gy PV (0 =1,2,...,k)
i=0
where the ¢;; () are cofactors of the determinant w(2) and hence are again
polynomials in 2 with rational coefficients.
Differentiate these & equations o times. Then

i k4o6—1
Z (h) (/L) /a' G h'E‘l = y Q’i} (z) 'FV()) (z) (L == L 3 u g ey k)
h=0 =0

where also the Q,]( ) are polynomials in ¢ with rational coefficients.
Here finally put z = 1. Then, by (10),

w (1) E, S‘ DFN1) (i =1,2,...,k).

The k- o expressions

k
POy = Z.z),.j(1)1¢i (G =0,1,..., kto—1)

i=
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on the right-hand sides of these equations are linear forms in #,, ..., E,
with rational coefficients, and these k - ¢ linear forms can, by w®(1)
+# 0, be solved for each of the F,.

It follows that there exist k distinet suffices J = J (1), J(2),...,
J (k) in the interval 0 <<J <k-+s-—1 = R--k*—1 for which the cor-
responding linear forms :

k
(11) FYO(1) = 3P (WB;  (j=1,2,..., k)
i=1

in Hy,..., E, are linearly independent. Hence the determinant of these
forms

is distinct from zero.
8. The new polynomials
@ Py(2) = (aD+a;YPz) (i =1,2,...,k; j=0,1,2,...)

are again at most of degree », but have integral rather than rational coef-
ficients, say

WPy(2) = M plhy i, jld" (i =1,2,..,kj =0,1,2,..).
h=0
From
Pi(z) = X p(i,j)e
h=0
it follows that o’ P; (z) has the explicit form
j

h=0 1=0

(g)“l“i:”lp(i, hyh(h—1) ... (h—1+1)2""

Here
i . , |
2(%) dla,/'< B’ and  h(h—1)...(h—1+1) < B <¥,
=0
so that

Diplhy i, jll< (rBY Y pi, b,
h=0

fe=40
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and therefore, by (5),
(12) Nipthy i, g1 < (B2 (R B
h=0

(/i e ,1,727 ey k;j = 071,27 "')'
Put now
gy = a’OP, (1) (i) =1,2,..., k).

Then all the numbers g,; are integers, and by § 7 their determinant

does not vanish.
Since none of the suffices J(j) exceeds R+ k* —1, we deduce imme-
diately from the estimate (12) that

(13) 1941 < Oyl (t,7 =1,2, e k)
where C, denotes the expression
(14) Cl = 9r ('V‘B)R%»k*'l(kmBm*)R* .
9. In analogy to the integers g,; put
L = a’OFY(1)  (j =1,2,...,k),
so that L; is the linear form
L‘] :gl]’Elj‘— s +ngEk (j ::1,2,...,k)

in K, ..., E;.. An upper estimate for |L;| is obtained as follows.
The hypothesis

(A) rg = RAE —k+1
implies that
m=r+... 4 r+k—R=kR+E —k+1)+k—FR
= (k=1 R+ (k—2)k*+k,
hence, by k> 2, that
(15) m > R+E —1.

) ind Zh
F(z) = ! thhT

h=m

From
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it follows further that

FOE) = 1! ) I

h =m

Here we proved already the estimate
(6) Ifal < k(BJa)"(K™"B™)F"  for h=m.

Hence it follows that

@ FO1) < @/t N k(Ba) (K" B
“— (h—)!
Here substitute A = m 1 in the infinite series; the right-hand side
assumes then the form
— ,‘” B l
T (Bay™ (k" B™)E Z _ (_/‘t) _
(m— J) (m—j+1)(m—j+2) ... (m—j+1)

where for j < m the infinite series satisfies the inequality

oo
Z < eb’/a .

=0

Finally let j run over the suffices J(1), ..., J (k). These suffices do
not exceed R k™ —1, hence by (15) are less than m. Thus we obtain the

estimate
RA4-k*—1 L/a fer!

) a
|L;| <

16
0 s G e ).

(Blay™(k"B™)¥  (j =1,2,..., k).

Assume now again, just as in § 6, that r, is the largest of the integers
Fiy eoey T, thus that » =r,. By (16),

r,! ) . P
R o 22 Tk Lebla gtk —1—mpm pm*\R*
s el = (m—R—E*—1)! ¢ ( )

Here, by (15),

» * 1 -
a1€+lc 1-m < 1.

Further
0O<m—R—k"—1 =(r,+ ... +7)—Q2R+E —k—1)
and 7+ ... 1< kr,

hence
(m—R—E" —1)! > (r,+ .. _[_Tk)!(kr)——(zR+k*«k—»l)'
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Also

(ry+ oo 1)t
because the reciprocal of this fraction is an integer. It follows then that
(17) [Lyr,t ool << Oy (J =1,2,...,k)
where C, denotes the expression
(18) Oy = keP/o (k) m i1 g B™ )R

The results so proved in this and the preceding section may be com-
bined into the following lemma.
LuvvA 3. Let the notation be as in § 2 and assume in addition that

r=r, and ry=R4E" —Fk41.
Then there exist k linearly independent linear forms
Ly =gyl + ... +958, (J=1,2,...,k)
with integral coefficients g;; such that
95l < Oyl (6,5 = 1,2, ..., k),
Liry ool <Oy (J =1,2,...,k),
where Oy and C, are defined by (14) and (18), respectively.

10. Lemma 3 will now be applied to the study of a general linear form.
Denote by '

L =ux, B+ ... +u, ),
a linear form in #,, ..., K, with integral coefficients not all zero, and put
w; =1if w; =0, and @ =a; if w £0 (j=1,2,...,k),
and
= max (@], ..., [@]) = max(jz,, ..., [2.]).
‘We shall now choose the parameters r,, ..., r,, £ of Lemma 3 as functions

of @y, ..., 2, by the following construction.
Put

C = C(r) = k2r((logB)(logr)|'*,
and define a function f(r) of the positive integer r by

flry = e 2“0y,
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A well known form of Sterling’s formula states that

Pl = V2mrTe A0 where 0 < o(r) < -
12»
It follows that
1 .
,,ng(” = logr v~2k2((]00‘B )1/2 —1+4a(r),
7

where o(») denotes the expression

) logr .
g(r) = -
2 2 r

Here, for r > 2, it is easily verified that

0<o(r)<1,
hence that
(19)

logr —2k?*((log B) (logr))"* —1 <

}o_g;nf—(ﬁ < logr —2k2((log B)(logr))'*.

The definition of f(r) and this inequality show immediately that
(20) f1) =1; fry<1 it 2<r< B
It is also obvious that
(21) Clr—1)< C(r)y if r=2.

By definition, x is a positive integer. There exists therefore a smallest
positive integer » such that

fr) >
and this integer necessarily has the further properties
(22) Flr—1) << f(r),
so that by (21) also
(23) (r—1)! < Vg < #!.

Define similarly the integers 7., ..., 7, by the inequalities
(24) (=<l <! (j=1,2,..., k).
Then by (23) and (24) and in agreement with the hypothesis of § 2,
‘ ¥ o= 1aX (P, ..., 7).
Without loss of generality, let from now on

@ = 2] = |z
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be the largest of the integers |z], ..., [x,|. The formulae (23) and (24)
imply then that also
POy

is the largest of the integers »,,...,r,, in agreement with the previous
assumption.
By (22), f(r) is greater than = > 1. Hence, by (20) necessarily

(25) r= B% 1.

11. Having fixed 7, r,, ..., r, in this manner, define now R by

log B\'*1
(26) B o= kr|—— 41,
logr
so that
log B\ log B \'?
kr ~~O»g~~) < B <kr ~9—{£~~) +1.
logr logr

By (25) and k == 2 this choice implies that
R < AR +k—1,

and since »(logr)™"* iy an increasing function of » when (25) holds, it also
follows from B > 2 that
B4Ic4 24104 4 k4

(27) R > —Ekj—} ETAE T max (k, k%).

Hence the condition
E<R<vri+ ... +r,+k—1
of § 2 is certainly satistied. It further follows that
R+ —k+1<2R.
The former hypothesis
(A) ro=> R+E —k+1

does then certainly hold if

That this set of ineqﬁa,lities is in fact satisfied will now be proved in-
directly. Assume there exists a suffix j for which

r; << 2R.
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Then, by (26) and (27),
log B \'*? log B\'*
7<2Rx9k¢(9—~) 42<5k( o8 ) :
logr logr
whence

log B \'? log B\'*?
logr;! < rjlogr, << 3kr (Mlo(;r ) log (31c7 (—1—()%3:7) )

Here, again by (25) and by k= 2,

- log B\'* 3k -1
777777 \ N;‘Zk;):‘ '\\.\ - .

Hence
log B \'*
10{%“7','! < 3kr (lgg ) logr = ggkr((log,B)(logr))l/z’
ogr

and so, once more by k> 2,
;< €00,

contrary to the definition (24) of r; because lx}[ is at least 1.
We have thus proved that the definitions (22), (24), and (26) of r, ry,
., 7, and R, together with a notation such that # = |z;| and hence also
r = ry, satisfy all the conditions of § 2 and of Lemma 3. We are then al-
lowed to apply this lemma.

12. This means that, in addition to the given linear form
L = w1E1+ cen "[LmkEk,
there exist the k linearly independent linear forms
Lj:gle1+-" ‘*'gkjEk (J=1,2,...,k
of the lemma which have integral coefficients such that
gyl < Oyt (4, =1,2,..., k),
[Lry ! ool << Oy (1 =1,2,...,k).

The form L is then linearly independent of certain k—1 of the forms L;.
To fix the ideas, assume that the k forms

(29) Ly Ly, ..., Ly

are linearly independent. Hence their determinant
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does not vanish. This determinant is an integer, and so
4] = 1.

On solving the k forms (29), say for Z,, we find that

Loz, ... owmy |
’sz 922 . gkz[ — AEI
le e e e e e ’
Ly Gy - glki
It follows that
(30) Ae™e — LM+L,M,+ ... +L.M,,

where M, M,, ..., M, denote the cofactors of the elements L, L,, ..., L,
in the first column of the determinant for AH,, respectively.

By (28),
IM| < (k—1)1C%1p,l !

: f - ’
and since [r;| < o,

k '
, o N1 %] .
O < (k—2) 020, et Y (G — 2,3, . ).
1 272 k : 7‘,! ? b b

1=2

The identity (30) implies therefore the inequality

(31) 1< U+V,
where
k ’
/ . \ 1 |&
(32) U =(k—1) 56‘“1/“0’f"¢"2! vee 7"k! |L], V =(k ——1)!6‘“1/“0’;””2 02 17!'1
=2 U

‘We shall next establish upper estimates for U and V.
13. Since r; << r for all j, by (24),

koo
1 o(b_ 1O p N 17 _
L T B A e LT A \ —<(k—1)e 2w

and therefore
U< (k—1)le-nleQh-tyh=1g2b=000 4 g L, V< kle™®/e0r20,e7200,
Here, by the definitions (14) and (18),

Cl = 9 (rB)R+k*~l (kmBm*)R*, (72 . k(jB/“(k?)zR"Lk*'k_l Bm(kmBm*)R“ .



-
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It follows that
(33) U<Cyloy...opLl, V<C,
where O, and O, are defined by
Oy = (k—1)le™ /(2" (rB)FHR =T (g )1t ph=1 g2tk=1)C)
and
04: %! 6—a1/a(2r(TB)IHJC*—](kmBm*)R*’)/c—z keB/a(k,r)ﬂ%-'T k*-k—le(kmBm*)R*e»»QC(r}'

Here it is convenient to split off the factors of maximal size from C,
and €, and to write these expressions as

(34) 03 — 05 62(16»— 1)C(r) V(Ic«l)(R« l)B(k—l)m*R* , 04 . 068—20(1") 7.Ic(R~l)B(lc—l)m*R* .

where the new factors ¢y and C; are given by

05 — (k __1) ! 6—a1/a2(k—1)r k(lc—l)mR* ,,.(kv~1)(lc*+1)B(k—1)(1\’-{—]»’*—1)
and

CG — k . k y e(B—al)/az(k—z)r k2R+(k— mR*+k*—k—1 1,,(A:A Di*—k+1 B(k =2 (R+k*=1)+m .

The next step consists in obtaining simple upper estimates for 2C; and 20,
and hence also for 20, and 20C,.

14. Firstly, by the definition (26) of R,

1/2
R Hl g kr (lo,gg) :iE; R,
logw
while
k2
m < kr and therefore —m* < Ty

The second factors of € and €, in (34) have therefore the upper bounds

e

(35) ez(k—I}C(r),r(lc—l)(R~I)B(k~—1)m*1€* <e
and

11 y
(36) o 200) pR(It— 1) pll—1)m* R < 0“ (5*“2/7)6(”.

To deal with the first factors C; and g, we first note that
2(k—1)' <K, Rk K, (B—1)(KF 1) < E*)2,

(k—1)E —k+1<k/2, R+k-—-1--2R
and
C—ul/a {; 6”.‘ e(l-}-al)/a ,;:;: 62“.
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Therefore
> 2,07 .3 '
205 < kk61)2krkk 1'18‘7.7» /szka’.’ — 807 Say’

and
A 2 2 39 - N RN
206 < kl»ezBrisz FRerR* + k /21Jc /2 B2kR !»kr,

= €8 say.
Here

k=2, logk<e¢'k<k, B=2, logB<e'B<B, 2-logB> 1.
Also, by (25),

r> B% =00~ 2 ogr > 4ktlog B — 2k > 32,
Therefore .

(log B)(logr))"* = 2k*log B > k*,
whence
C(r) = K*r((log B)(logn))'? > k*r > k*B*" = 26,

We also note that, for the values of » considered, the function

is strictly decreasing and hence satisfies the inequality

logr  4k'log B 4K
< 1 < 4
r B4Ic B4k -1

— 2~57

e

—
= 3

Thus the following upper estimates for the successive terms of €,
and C,; are obtained.

_ k2 1 1 o
O hlogh < 950 = 4o, < page = 2%
2B 1 1
» "1. )(/ N _ o "_‘66,
0(7) 2B < k4B4k4 < k3B4k4"1 = 93,963 2 H
C(r)y ' kr-log2 < — 08 . - - < )

k((log B)(logn)" = k-2k*logB  2k* 16~

loo B 1/2

o8 ek
logr 3 - 3 ~ 1
K*r((log B)(logr))'®  ek-logr ~ 64e 40’

3701’(

C(r)y"'2R-logk <
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k*r-logk
C(r) " k2rR*loghk < - 4 -

log B \'? . ,
kr (—v gﬁ) “k*r((log B) (logr))'*
logr
logk 1
_ - < 964,
ke IogB er-log?2 = ’
01 7{21 k k2 k 1 — e,
Jr s —— OOk < e =
(") o PN T oy 2k
, k3 7»310gr logr  logr .
C(ry ' — 1 < — = < 27
(") o 08T 2ty Okr 4y = ’
log B \'* .
k-3kr{——) -logB
. , logr 3-logB
O(r)y " 2kr-loghB << - 2 = -
k2r((log B) (log7))" logr

3-logB 3 1
S a?

T ik logB 4K 16

kr-log B 1 {log B \'? 1 1
C(ry Y kr-logB = - ros s *og
' ((logB)(Iow)) 2 logr

On adding these results it follows at once that
¢, < }C() and Oy 10(»),
hence that
20, < T and 20, < 90,

Therefore, by (34), (35), and (36),

SIS AP _
(37) 20, < e(% 472 < e(2k o < e
and
1 1 1.
: “lytap)em Lo
(38) 20, < e (i 22l <e ' <1.

By (33), these estimates imply that
20U < g a2l L] and 2V < 1.
(In fact, they imply the slightly stronger inequalities
(39) QU < Vil Lap Ll and 2V < e M)
Since 2V < 1, it next follows from (31) that

20 > 1.
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This we combine with the upper bound for 2U just obtained, and we mul-
tiply both sides of the resulting inequality by the factor # = |z,/. We may
then again drop the hypothesis that |o,] = max(|z, ..., |#,]) and so
obtain the following result.

TueoreM 1. Let ay, ..., ay, where k= 2, be distinct integers, and let
a >0 be an integer satisfying (@, ay, ..., a;) = 1; let further xz, ..., x, be
integers not all zero. Put

B = a-+max(la,|, ..., fagl), B = 6’11/“ R el
and
1_ Z.f .’Uj = . i
Ty =1 . ) (J=1,2,..., k)
¥ if @ #0

x = max ([, ..., |2]).

Also, for positive integral v, put
O(r) = k*r((logB)(lognr))'*,  f(r) = e 0yl

If v denotes the smallest positive integer for which

flr—1) < <f(7')9

then
4
r= B% 11
and
[y @y oo (e By g By ...+ mp )| > we 00
By (39), this inequality may in fact be replaced by

, ro ’ , N —(2k—1HCr)
(10) Wy gy ... (0 By -y By ... F )| > ae” (R0

which is slightly stronger.

15. As a corollary to this theorem we show how it simplities when @ is
very large, thus under the hypothesis that, say
(41) v > Bl(,m,b)lem'
It had been found in § 10, formula (19), that

. 1
logr —2k*((log B) (log#))'* —1 < ~0§Ji—v< logr —2k*((log B) (log#))'"*
. P N

Here the right-hand side implies that

Fir) <.
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Since f(r) > x, it follows therefore from (41) that now
= BIGIC'“I' 74_1’

hence, by k> 2 and B > 2, that

(42) r > 2756,

By the first lower bound for »,

whence, by (19),

fir—1)
7:*1”—"> 5 10g(7 —1)—1
This implies that
—1 r—1 ;
UG 1) =" (Yog(r —1)—1) > Hlogr,
r— . J

.

as follows from the very large lower bound (42) for . Thus also
flr—=1) =",
The integer # is then connected with by the inequalities

I A

so that
y
glogr < logx << r-logr,

logr —log3 +loglogr << logloga << logr +-loglogr << 2-logr.
On the left-hand side, by (42), trivially
loglogr > log3,
so that
logr << logloga << 2-logr.
On ecombining the last inequalities, it follows then that

loga 6-logz

-

<7 —
loglogx logloga

These inequalities combine to the result that
C(r) < 6k2(logw) ((log B) (loglog®)™")"*.
Theorem 1 implies therefore the following corollary.

6 — Acta Arithmetica XXVII.
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- ’ B
Let ay, ....ap,a, B, By, ..., By 20, ..., %, %1y ..., 2, and x be as in
Theorem 1, but assume that now

- A, 7316k*
x> B16I./ B .

Then
.o ’ . - —12k3(log: 2y — 1y1/2
ey ... mk(lel + ... '+wk-Ek)} -~ xe 12k°(logz)((logB) (log logz) — 1) .
This is Baker’s first result, but with explicit constants.

16. Let ay, ..., ay, a, By, ..., H, be as in Theorem 1, but assume that
a;, and I, have now been specialized by taking

a, = 0, hence K, =1.
Denote by ¥,, ..., ¥, positive integers such that

(43) Y=k
and that the product

O =YYl =Yy Y By — Y
satisfies the inequality
(44) 0< o< 1.

Theorem 1 will enable us to establish a lower bound for o in terms of ¥, .
For this purpose put

. Uk=1) 1, ] ; .
7y = @ 8 l)xykEj"'@/j] (J=1,2,..., k1)
and assume, without loss of generality, that the notation is such that

Q1= Qg = o =g > 0.
Since evidently
(45) P1¥2 « o Py = Yo =k = 2,

not all the ¢; can be < 1.
If

#r-1>1 —and hence ¢; >1 for j=1,2,...,k—1,

put » = k—1; otherwise denote by x the smallest suffix in the interval

for which
Pt 1Prgn e iy = 1.

By (45), such a suffix certainly exists.
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17. Having fixed » in this way, consider now the system of x4 1 < k
linear inequalities,
lei\:([’] (j::1,2,...,%—1),
(46) szl \\/\ (px(pz—{—l' .. (plc-l g P s
@18y e Y+ Ty, << 1
for x,, @y, ..., ¢, ;. The x -+1 linear forms
Lyy Boy eeny Xy 1Yy + ... +’mu?/x”%“wkyk

in @y, @y, ..., @, x, on the left-hand sides in (46) have the determinant
953 and the produet of the right-hand sides is by (45) equal to the same
value since

PreePre1 PPt P = Yro
Hence, by Minkowski’s theorem on linear forms, the inequalities (46)
can be satisfies by a system of x--1 integers x,, @,, ..., ,, @, not all zero.
But since all the #’s and y’s are integers, the last inequality (46) implies
the equation

(47) DYyt e T 0Y Y = 0.
Hence it follows that already at least one of the integers
Tyy Lay ovey By

does not vanish. On the other hand, it is uncertain, and in fact of no impor-
tance, whether x, is or is not equal to zero.
We denote from now on by 4, iy, ...,7ix all the distinet suffices

1,2,...,%
for which

here naturally

18. The right-hand sides ¢; and ¢,p, ;... ¢;_, of the first » inequali-
ties (46) all are greater than 1. It follows therefore from these inequalities
and from the equation (45) that

(48) [, e e e Bigel < P1@Poe e Cut PPy Prr = Vg

Tt is also possible to give an upper bound for z,. For identically,

LYyt een F @Y A @Y = (0 By e B )y — E @ (Y5, B —¥5) 5
j=1
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so that, by (47),

(49) (e By 4. +o, B, +m2)y, = V Yl —y;).

Here

HE=1)

ol <qj B -yl = —

(J=1,2,...,%)).
.
Vi

It follows then from (49) that

[ By 4 ... e, B, fay] < x0T,

Here » < k—1, o << 1, and y, = k, so that also
_ (k—1) =1
(50) ey B+ ... 4o, B 42 < mw—»j — 1.
Y
Thus
[l << 1L+ |wy| By oo 42| B,
where

B =" < etlm < e (j =1,2,...,%).
Hence, by » < k-1,

g << ke max (layl, ...y @) = kePmax (jwy |y ... @)

Therefore, on noting that x,., =x,., = ... = ,_, — 0 and putting

v o= max (joy, ...y o) = max(a |y ... 2, 270,
it has been proved that

(51) @ < kePmax (o [y ..y 2, ])

All factors of the product By @y oo e ave integers not zero so that
{
VAR et )

K

the absolute value of this product cannot be less than max (la; [, ...

The inequality (51) implies therefore that

5 @y | = - (keP) " 'a,
and hence it follows from (48) that
(52) @ < kePy,.
Put now again '
1 itz =0
2; = (j =1,2, , k)

1{1)‘
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Since |x,| < @z, by (48),
g .o ] < Yy
whence, by (50),
(53) iy o gy, By o g By o) < (B —1)me Y,

19. Apply now to this inequality (53) the remark to Theorem 1. For
this purpose, with a slight change of notation, denote by »" and "’ the smal-
lest positive integers satisfying

forr=)<ae<f(#) and f@"—1)<y<f0r"),
respectively. It follows immediately from the estimate (40) of § 14 that

1
— (2k~Z}c)
(F—1) =D = ¢ ( 4) ,

so that, by the definition of w,

1
_ o == (2k—=3)CE)
(54) Wl By —yu | Y By — 4] > (B —1)"" e ( 4) .

This formula has still the disadvantage of involving the integer »’ de-
pending on « rather than the integer '’ which depends on y,. We show now
how to change over to a formula involving »”.

For the moment, put

B = 2k*(log B)'2.
In § 10 we had for every integer » > 2 obtained the formula

log
Obf(y) — logrﬂ-ﬁ(logy)uz —1 +0(7')7

where
log(2=r) o(7) 1
== - & d. 0 T e
o (r) ST = el =15;

Assume now again that
X3
r>= B™ 11,
then, by § 14,

r
r= 2% logr > > 32, ———g————< 2~
s

From these estimates it is easily deduced that

logr
r

0<o(r)< <279,
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and that therefore

1ng( (logrmﬂ(logr 1/2 1_+2—57“
r

Henece, whenever f(r) > 1, then necessarily
(55) logr — p(logr)? > 127 > 2,
On the other hand, from the definition of f(7),

f(T Jf_l)_ — glog(r+1)~p(logr +1)l2, 6-—ﬁr((log[r+1])‘/2~(10gr)1/2).

f()

Here, by (55) applied to r +1 instead of r, the first exponential factor
on the right-hand side is greater than ¢*4. Next, by the mean value theorem
of differential calculus,

(log(r +1)2 — (log )" < (2r(logr)"?)~",
log g ,

hence, by logr > 2,

pr((log [r +1])"2 — (logr)"?) < ]

so that the second exponential factor is greater than ¢~ 2. We have thus
found the basic inequality

(56) fr+1) = e fer)y it r>=B¥ 1.

20. This inequality shows that f(r) is strictly increasing and that for
every pair of positive integers n and » > B +1,

flr4-m) > e f(r).
Now, by (52) and by the definitions of ' and ",

fl#' —1) < ke® Y, and oy, > f(r").
It follows that

v <<v"+4B+4-logk 1.
The right-hand side of the estimate (54) is then greater than

1
: —(k—=1){2k— - |C(r" +4B+4-log k1)
(k—1)"¢Ye =3) r y = M say,

for C(r) trivially is an increasing function of 7.
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The quantity 4B -+4-logk-1 is negligibly small compared with
¥’ = B¥ 1 1. From the definition

C(r) = k*r((logB)(logr))"*

of C(r) we deduce then easily that

M~ ¢ 2k=1CE")

Hence, on writing again r for »”’, the following result has been established.

THEOREM 2. Let a, ..., a,_,, where k=2, be distinct non-vanishing
indegers, and let a > 0 be an wnteger sat@sfymg (@yap,...,a¢, 1) ==1; let
further ., ..., y, be integers such that y, > k. Put

B = a+max(lay, ..., la, 1), B, =V ... K, | = ¢k

and define C(r) and f(r) as in Theorem 1. If r is the smallest positive integer
satisfying
For—1) < g < f(r),
then
r = BY% 1
and
Vel By =) B =y | > e,

21. Considerations similar to those of § 15 allow to replace this esti-

mate by one which, although less good, is more explicit.
We now assume that

1654 BW‘
Y= B

Under the same hypothesis as in Theorem 2 it follows then that

, ~~12k:"(lc——])((10g]_'s‘)(loglng1/]1.)"l)}!2
Yo Y By = Yy — Y| > Wi
Apart from the explicit constants, this estimate is again due to Baker.
It is highly probable that the constants in Theorem 2 and in this
corollary can be improved by a direct application of Lemma 3 instead
of the transfer method.

MATHEMATICS DEPARTMENT
INSTITUTE OF ADVANCED STUDIES
AUSTRALIAN NATIONAL UNIVERSITY
Canberra, ACT., Australia

Received on 18. 4. 1973 (394)



