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On Some Speciai Decimal Fractions

K. MAHLER

AUSTRALIAN NATIONAL UNIVERSITY
CANBERRA, AUSTRALIA

For a special countable set of irrational numbers, infinitely many integral multiples are constructed
the decimal expansions of which begin with very large numbers of the digit 9.

Real irrational numbers have the well-known property that the frac-
tional parts of their multiples lie dense, and even are uniformly distributed,
between 0 and 1. In a different direction I recently proved [2] the following
result: To every positive integer n there exists a second positive integer
P = P(n) such that, if « is any real irrational number, then there is a positive
integer p = p(a, n) satisfying 1 < p < P(n) such that every possible sequence
of n digits 0, 1, 2, ..., 9 occurs infinitely often in the decimal expansion of pa.

In the present note, I shall establish a result of a somewhat different kind.
Let f(x) be a positive integral valued polynomial of degree m > 1, and let
a(f') be the decimal fraction obtained by writing the decimal forms of (1),
f(2), f(3), ... successively after the decimal point. Then, for every sufficiently
large positive integer N, among the first 10¥™ digits after the decimal point of

(10" = 1)(102 = 1) -+~ (10" = 1))y"* 1,

there are at most (m + 1)N? digits distinct from 9.
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Almost forty years ago I had studied these numbers [1] and proved that
they are transcendental, but are not Liouville numbers. In the present note I
apply both notations and results of this old paper.

We begin with an almost trivial lemma.

Lemma Let
X .
o=rog— Yy r, 107"
v=1

be a convergent series where the r, are positive rational numbers, and the i, are
strictly increasing positive integers. Denote by dy a common denominator of ¢,
Fi, -5 Py, and by ey and ey positive integers such that

dy ~max(ro, ry, ..., ry) < 10°%%  dy - > r107" <107

v=N+1
If
ey > Ney,
then at least ¢y — Ney of the first ey digits after the decimal point in the
decimal expansion of dyo are equal to 9.
Proof The positive integer dyr, can be written as

dNrO = (dNro - 1) + 0'999 ey
where the decimal fraction has only digits 9. Hence

N 0
dyo = (dyro — 1)+ 0999 ... — Y dyr, - 107" —dy - Y r, - 10"
v=1 v=N+1
Here, by the definition of e, and ¢,, each of the decimal representations
for the integers dyr, dyt,, ..., dyry contains at most ey digits distinct from
0, and the decimal expansion of the convergent series

dy - Y r,-107%
v=N+1

has only zero digits in the first ¢y places after the decimal point. On account
of the term 0.999 ... the assertion follows immediately.

The numbers o(f) of my paper [1] were defined as follows. Denote by
f(x) a polynomial of the exact degree m > 1 which for positive integral x
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assumes only nonnegative integral values and write
h

S(x) =AM (x) = HZO(—I)"(Z)f(x +h—H) (h=0,1,2,..)
for the successive differences of ' (x). We need consider these differences only
for 0 <h <m because those with h >m + 1 vanish identically. All these
differences have integral values for all positive integers x, and they are
moreover positive if x is sufficiently large.

Without loss of generality, we impose the stronger restriction that f'(x) is
strictly increasing and positive for x > 1 and that moreover

Mx)>0  for O<h<mand x > 1.

It follows in particular that, for y > f(1) > 1, there exists the inverse function
x = g(y) of y = f(x), and here also g(y) is strictly increasing.
A little more can be said. We can write f(x) in the explicit form

SO)=a "1 +oyx " +oayx 2+ + o, x ™),

where o is a certain positive number and a,, a5, ..., o, are certain real
constants. Hence it follows that for sufficiently large y,

g(y) = ay'™ + 0(1). (1)
3.

For every positive integer k the function value f (k) can be written as a
finite decimal

My
f(k) = Z dulOM"_l = dyodyy " dkMk s
i=0

where the coefficients d, ; are decimal digits 0, 1, ..., 9, where in particular
dio >0 for all k,

and where the numbers M, are nondecreasing nonnegative integers.
We associate now with the polynomial f'(x) the infinite decimal fraction

a(f)=0"dd;, “rd iy dyody, rdyy,dyodsy o dyy

3

By way of example, the polynomial
‘ d(x) = x(x + 1)/2
has the required properties, and with it is associated the decimal fraction

o(¢$)=0.13 610 15 21 28 36 45 55 66 78 91 105 120 136 ... .
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From my old paper [1] I take a strongly convergent series for a(f).
Denote by n the positive integer for which

1071 <f(1) < 10" — 1,
and put
Jn-1=0 and j, =[g(10"—1)] for v=nn+1,n+2,...;

further write

Zu Ju=Ju-1)=(v— ]vl—ZJu

for v=n+1,n+2,n+3, ....
With this notation

= Ym0 P4 F a0 ¥ g0

v=n+1 k=j.,-1+1

Here the finite sums can be summed by means of a formula from difference
calculus, giving the formula

= i £(D(10" — 1)"h+D

- Z 1077 Zf,,]‘ L+ D0 = 1) D — (108 — 1)k,

(2)

On putting

ro= 3 f1(10" — 1) 4,

Fron= 3 fliey + D107 = 1) 650 (100 - 1))
for v>n+1,
iv=J,4. for v>1,

the formula (2) can be written as
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a series of the same form as in the lemma. From their definitions, all the
numbers ry, ry, r,, ... are positive and rational. The coefficients f,(1) and
Juljv—1 + 1) are positive integers. If further dy denotes the product

dy = ((10" = 1)(10* — 1) -+ (10V — 1))+ 1, 4)
then dy is a common denominator of the N + 1 rational numbers ry,ry,...,
ry, and

dN < (101+2+~-+N)m+1 — 10(m+1)N(N+ l)/Z'
In order to make use of the lemma, we require upper estimates for the

numbers e, and ¢,. Such estimates can be derived from the formula (1) for
g(y). It implies that for large v

jy=0a-10""+0(1) and J,=oa(v— 1) 1007 Dm 4 O(100 Vim),
(5)

This implies that there are two positive constants ¢ and C such that for
large v,

ev - 10V <i, < Cv - 107", (6)
Further, for h =0, 1, ..., m, and for large x,
Julx) = O(x™),
hence, by (5), for all such values of h and for large v,
Saljv-1 + 1) = 0(10°).
On the other hand, for such & and v,
(10°"1 = 1)""*H — (10" — 1)~ ** D = 0(107).

Therefore all the sums r,, 74, 15, ... are bounded positive numbers, say not
larger than 10”7 — 1 where p is some positive integer. This means that for
sufficiently large integers N the products dyrq, dyry, dyr,, ... are positive
integers not greater than

10(m+ 1)N2 __ 1’

therefore by (6) that

a0

0< Y dyr, 107 <10710%",

v=N+1
The hypothesis of the lemma is thus satisfied with
exy=(m+ 1)N* and  gy= 10"

Here ey > Ney for all sufficiently large N, and hence the lemma leads to the
following result.
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Theorem The decimal fraction a(f) belonging to a polynomial f(x) of
degree m has the following property. To every sufficiently large positive integer
N there exists a positive integer dy of at most (m + 1)N(N + 1)/2 decimal
places such that at least 10N™ — (m + 1)N? of the first 10"'™ digits after the
decimal point in the decimal expansion of dyo(f) are equal to 9.
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