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We study analytic solutions of the functional equation
hE)2—h(2) e = 0, (H)

where ¢ > 0is a parameter, and constant solutions are excluded. It suffices
to consider solutions for which A(z) — 21 is regular in a neighbourhood of
2=0. If 0 <c <% h(2) can be continued as a single-valued analytic
function into the unit disc |z| < 1 where its only singularity is the pole

at z = 0; the circle |z| = 1 is a natural boundary. On the other hand, if

¢ >}, then by analytic continuation A(z) becomes a multiple-valued

function with an infinite sequence of quadratic branch points tending to
every point of |z| = 1, and no branch of A(z) can be continued beyond
this circle.

A change of variable transforms (H) into the difference equation
9(Z+1)=g(Z) = 9(2)*+C,

where ('is a real parameter. The solutions of this equation have properties
similar to those of (H).

INTRODUCTION

While there are general methods for dealing with linear differential, difference, and
functional equations, nonlinear problems of these kinds require special methods,
and the solutions often depend rather discontinuously on the occurring parameters.
This strange behaviour makes them of particular interest to the pure mathematician.

In the present paper I discuss a special nonlinear functional equation with just
one parameter, and I establish the manner in which its main solution depends on
this parameter.

1.
The functional equation to be considered is a special case of a more general

equation studied by myself a few years ago.
Denote by p a prime and by

HX,Y)= —(X»—Y)(Y"-X)+ 3 % E, X"¥* (E

m=0n=0

mn = Enm)
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a symmetric polynomial in X and Y with complex coefficients E

EI’ EP

'mn» Where

p=Llpap =1ty =0

As I have proved (Mahler 1976), there exists a unique formal Laurent series

h(z) =271+ E‘, b, 2"

n=0

with complex coefficients such that
H(h(zr), h(z)) = 0.

This formal series k(z) has in fact a positive radius of convergence, » say, and it
defines for |z| < r an analytic function with a simple pole at z = 0.

If r > 1, h(z) exists thus as a single-valued function in |z| < 1.If, however, r < 1,
then by means of the functional equation A(z) can still be continued into |z| < 1,
but now possesses infinitely many algebraic branch points in this disc tending to
every point of |z| = 1, and A(z) is multiple-valued in the unit disc. The dependence
of the radius r on the coefficients £,,, is still an unsolved problem.

I have solved this problem for the special equation considered in this paper.
When reducible, H(X, Y) splits into a product of the form

-2 —2
H(X,Y) = — (Xﬂ+p2 6, X7 — Y) (Yl’+p2 . Y"—X),
n=0 n=0
with certain complex coefficients ¢, ¢y, ...,¢, 5, and the functional equation for
h(z) takes the simpler form

p—2
hz)P+ 3 e h(z)" —h(zP) = 0.

n=0
We shall be dealing here with the case when p = 2 and ¢, = ¢, so that
h(z)?—h(z%)+¢c = 0. (H)

To simplify the considerations, it will be assumed that the parameter ¢ is positive,
but it is probably possible to deal similarly with the case when ¢ is an arbitrary
complex number. When ¢ = 0, the only solutions k(z) analytic in a neighbourhood
of z = 0 are integral powers of z, and for ¢ # 0 the only solutions regular in a neigh-
bourhood of this point are constants. It is also clear that if A(z) satisfies (H), then
so does the function A(2™) where m is arbitrary. Non-trivial solutions A(z) of (H)
necessarily have a singular point at z = 0. By the general result quoted at the
beginning of § 1 this singular point may be assumed to be a simple pole of residue 1.

2.
Let then for the moment

h(z) =271+ ;] b, 2" (1)

n=0
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be any formal Laurent series with complex coefficients satisfying the functional
equation (H). It follows immediately from (H:) that
h(=2)* = h#) —¢ = h(a)?,

so that A(z) is either an even or an odd function. From the series (1), it is necessarily
odd:
h(—2) = —h(z). (2)

Hence all the coefficients b,, with even n vanish, and we may write (1) as

h(z) = 271 = % a,2*"7, (3)
n=1
where a,, = —b,,,_;.

On substituting the formal series (3) into (H), it follows that
— 2271 Z a, 2>+ E Y‘ @,, @ 22MH=D =24 3 g 22D 4o = 0,
n= m=1n= 1 n=1

Since in this identity the sum of the coefficients of each occurring power of z must
be zero, we deduce the system of recursive formulae:

n—1 n
= %C” Aon Z Aoy ]+%(a’%b+an)’ Aopt1 = Z @jlop—j1 (n = 1’ 2’ 3’ )

i= Jj=
(4)
For the lowest values of n,

a, =

DO

e, Ay = Fc*+2c), az= F(c3+2c?), a, = 15(5c¢t+ 10¢® + 9¢* + 18c).

Generally a,, is anon-constant polynomial a, (c)in ¢ with non-negative rational coeffi-
cients. Thus, for ¢ > 0, all thecoefficientsa, are positive-valued increasing functionsof c.
It is convenient to put
e
9(2) = X a,2>*}
nm=1

so that

h(z) = 271 —g(z).

By Mabhler (1976), g(z) has a positive radius of convergence, » = r(c) say. For all z
satisfying |z| < r,

l9(2)] < g(]2]),

because the coefficients a,, are positive. An upper estimate for g(|z|) can be obtained
as follows.
If, first, ¢ > 2, the recursive formulae (4) show that

a, > 1 and therefore 1(a%+a,) <a? (n=1,2,3,..).

n
Therefore
. n—1

a; =% and a,< ¥ a;a
i=1

(n=234,..).

n—j
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Hence if new coefficients A, are defined by the recursive formulae

n—1
AIZ%C and An= E AjAn—]' (n=2;3a4"")7

j=1
then
0<a,<4, (n=1,23..).
Put now
Gity= Y A, t*
n=1
so that
G(t)2 = E Z AmAntm+n = 3 (AlAn—1+A2An—2+"'+An-—1A1)tn
m=1n=1 n=2
= ¥ A, =G(t) — bet,
n=2
whence

Gt —G(t)+ het = 0, G(t) = 31+ (1—2ct)}).

By its power series, G(t) vanishes at ¢t = 0. Therefore the negative sign of the square

root applies, and
G(t) = {1 — (1 —2ct)}}.

It follows that the power series for (/(¢) converges in the interval

0<t<1/2.
In this interval,

1 1—(1—2ct)}) 1 1+(1——2ct)‘1’> 1
G(t) '{ 2 } N ct et
Hence
0< @) <cet if ¢c>2 and 0<t<1/2c
Now

9 < g(lz) = X a,fst < B Afet = O(Jef)/ [
The estimate for () implies therefore that

9G] < g(l2]) < clzl*/2] = ¢
Next, since the coefficients a,, are strictly increasing functions of ¢, the function

g(|z]) is for fixed |z| a strictly increasing function of ¢ > 0. Hence the estimate for
|9(2)| just proved shows that also

z| if ¢>2 and |z| < (2c)°%

l9(z)] < 2|z] if 0<c<2 and 2] <}
On combining these upper bounds, we arrive at the following result.
THEOREM 1. Let ¢ be positive and z complex. Then
if ¢>2 and |z c)—’lf,
=1 < [ e
12] z| if 0<e<2 and |2 <

We shall later apply this theorem to the computation of h(z).
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3.

From the Laurent series (3) for h(z), the derivative of A(z) is
h(z)=—22— 3 a,(2n—1)z22
n=1

which converges and is negative on the interval 0 < z < r on the real axis. As z
runs over this interval from 0 to r, h(z) strictly decreases from +co at z =0 to a
certain limit at 2 = 7 that is either a finite real number or is equal to — 0.

As a consequence, we can prove the following result.

THEOREM 2. Ifc > 1 then 0 <7 < 1.

Proof. We know already that r is positive; we have thus only to prove that r < 1.
Assume on the contrary that » > 1. Then the limit

h(1) = lim A(z)
z—>1—0
z real
exists and is either a finite real number, or is equal to —oo. Now, from (H),
h(1)2=h(1)+¢ = 0,
whence
h(1) = 3{1 + (1—4c)t}.

But both these values are non-real, which gives a contradiction.
Theorem 2 shows that
0<r2<r. (6)

4.

Before continuing with the study of A(z) for ¢ > 1, let us investigate a special
sequence {p,(w)} of polynomials p, (w) that is defined by

p(w) =wite, p,(w)=p,(wlP+c (n=1,23,..). (7)

These polynomials are of degree 2" in w; they have constant coefficients and highest
coefficient unity. Moreover, they satisfy the following further identities,

Puii(w) =p (w+c) (n=1,23,..). (8)
For, from the definition,
Dy(w) = (WP+c)*+c = py(w?+c),
and if for any n > 2 it has already been proved that

Pp(w) = p, (W) +c=p, (w+c),
then also

Puir(w) = p(w)+c = p, (wi+c)+c = p,(w+e),

which proves that (8) is true for all positive integers n.
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On differentiating the equations (7),
pr(w) = 2w,
py(w) = 2p,(w) p3(w),
= 2py(w) pa(w),

p3(w)

D) = 2pp_y(w) Pp (),
and therefore
here there are no p-factors for n = 1.
Define now a sequence {C, } of constants C, by

C,=0, C,=+(C,_,—c)}; hence C,_,=c+C% (n=0,1,2,..). (10)

Thus C, has for n > 1 not one but 2" allowed values since its definition involves n
square roots. The constants C,, are in fact the zeros of the polynomials p, (2).

The polynomial pj(w) vanishes at w = 0 = C,, the polynomial py(w) both at
w = Cyand at w = + (—¢)} = C,. For general n it is easily deduced from (9) that

pn(w) has the zeros C,,C,...,C (11)

> ¥n—1"

5.

The functional equation (H) for A(z) is equivalent to

h(2?) = py(h(z)).

On squaring z repeatedly and applying the equations (H) and (8), induction on n
leads to the more general functional equation

h(z%") = p,(h(z)) (n=1,23,...), (12)
because
h(z¥") = pp_1(h(z?)) = pp_1(h(2)*+¢) = p,(R(2)).

For the application of (12), denote by R an arbitrary number in the interval
0 < R < 1 and by n any positive integer such that

RY <.
In the region
Up: 0<|z| <R,

the function A(2%") certainly is regular. By the functional equation (12) we have
defined A(z) as an algebraic function of h(2?") which evidently has no poles in Uy,
but may have a finite number of algebraic branch points. Moreover, by the theory
of algebraic functions, k(z) must at these branch points satisfy the further condition

Py(h(z)) = 0. (13)
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It follows then from §4 that at these branch points %(z) has one of the values
h(z) = C,,Cy, ...,C,_4,
and hence, by (H), 2(z?) has one of the corresponding values

h(z2) = ¢,C,,C,, ..., C

> n—2°

Allow now R to tend to one, and hence n to tend to infinity. The region Uy then
becomes
U: 0<]z] <1,

and we conclude that the only singularities of 4(z) in U are possibly infinitely many
algebraic branch points. Moreover, at these branch points A(z) may assume only the
values

hz) = Cy,C,,0,, ...,
and h(z?) the corresponding values

h(z?) = ¢,C,,C,, ... .

6.

So far, we have not vet proved that the analytic continuation of k(z) into U
does in fact have branch points. We first construct a subset %, of U in which the
analytic continuation of A(z) is still regular.

Denote by m any positive integer and by p, for m = 1, either of the two numbers

p==r,

but for m > 2 let p denote any one of the 2"~ complex roots of the equation

P = —r.

With each pair (m, p) associate the line segment L(m, p) of all points
z=1p where 1<t <|p|™.
All these line segments are subsets of U. We denote by
Ry= U\ U L(m,p)

(m, p)
the set of all points in U that do not belong to any line segment L(m, p).

The set R, has the property that if z is one of its points, then also 22 lies in X,

This assertion is obvious when z is not of the form z = tp for any pair (m, p) and
any real number ¢ with 0 < ¢ < 1 because |z| > [z%|. If, however, z is of this form
for a certain pair (m, p) and a certain real number ¢, then either m = tandp = +7r,
and hence |z| < r and therefore also |z%| < r so that certainly z2€ #,; or m > 2,
when 22 = t?p% where 0 < t* < 1, and p? evidently is a root of the equation belonging
to m’ = m— 1, whence again z?e Z,,.
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The following property can now be proved.

TarorEM 3. Let ¢ > }. If h(2), as defined by the Laurent series (3), is continued
analytically by means of the functional equation (H) into X, then it is regular at all
points of this set.

Proof. Let the assertion be false so that there exists at least one singular point,
2, say, in #,. The points z,, 22, 23, 25, ... all belong to Z,, tend to 0, and finally lie in
the set 0 < |z| < 4r in which h(z) by its series (3) is regular. Hence there exists a
positive integer n such that 22""* is singular, but 22" is regular; again write z, for
, s0 that z,, but not 22, is a singular point of A(z) in Z,,.

This implies that the function A(z2) is regular in a neighbourhood of z = z,. In
this neighbourhood, by (H),

on-1
%0

h(z) = {h(z2) —c}}. (14)

Therefore k(z) can only then be singular at z = z, if this point is a quadratic branch
point of h(z) and if, moreover,

h(zy) =0 and A(22) =c.

(Note that this corresponds to the first possibility for algebraic branch points of
h(z) considered in §5.)

The two properties of h(z), first that z = z, is a quadratic branch point, and
secondly that h(z,) = 0, have the consequence that there must pass through the point
z = z, two continuous differentiable curve arcs, I} and I', say, that (i) intersect at
this point at right angles, and (ii) are both mapped by the function w = 2(z) onto
two intervals on the real axis in the w-plane that both contain w = 0 as interior
points.

By (i), the straight line through the two points z = 0 and z = z, cannot be a
tangent to both arcs I} and I, at the point z,. Choose the notation such that the
line is not a tangent to I'; at this point. Hence if the points z on I'} are written in

the form
2 = ueZn:w’

where u and v are real, and 0 < w < 1, then v is not a constant as z tends to z,on I},
but is a variable continuous function of z.

It has been proved in the theory of diophantine approximations that the set of
all real numbers v for which the inequality

lo—(p/q)| <q®

has infinitely many solutions in integers p,q > 0 is of Lebesgue measure 0. This
implies that there exists some point

Z* =y (y* p*real, 0 < u* < 1)
on I arbitrarily close to the point z = 2z, such that

lo* —(p/q)| = ¢*~°
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for all integers p and all sufficiently large integers ¢ > 0. It follows that

|2nv* — nearest integer| > 2-2»
and therefore
|sin (27 2n0%)| > 2737

for all sufficiently large positive integers n.
By this construction, the point z = z* lies on I'}, and hence h(z*) is a real number.
Since h(z?) = h(z)? +c, it follows that all the function values

h(z*2") (n=0,1,2,...)

are real. On the other hand, by the Laurent series (3),
h(z%2") = (2¥2) 71— 3 q, (2¥2")2—1 = 2E-2 Oy 2",
k=1
and both z*?" and «*?" tend to 0 as n tends to infinity. Hence the imaginary part of
h(z*¥") is equal to
—u* 72 gin (27 2e*) 4+ O(u*2"),
so that for large n its absolute value is not less than
%u*—% 9-3n

and so tends to infinity with n. But this means that A(z*?") is not a real number
when n is sufficiently large, contrary to the construction.

COROLLARY. At the non-real points z of X, the imaginary parts of z and h(z) have
opposite signs.

Proof. This assertion is implicit in the last proof. By it, A(z) can be real only for
real z (although, in fact, it need not be real for such points). Hence the imaginary
part of A(z) has fixed signs for both Imz > 0 and for Imz < 0. The sign of Im A(z)
can be determined by considering points z of small modulus and applying once
again the series (3) for A(z).

7.

We have not yet proved that h(z) does in fact have branch points in the larger
set. U. The proof will be based on the following lemma.

Lemma 1. Let {e U, so that £ # 0. Denote by &, either root of the equation (% = &.
Let further

P = ¥ gulz-0h

be a series in powers of (z— )} that converges in a neighbourhood of z = {, and in which
the coefficient ¢, is not a real positive number and the coefficient ¢, does not vanish. T'hen

Y(z) = {p(z%) —c}t
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can i a neighbourhood of z = &, be written as a convergent series

¢‘ Z wnz_' %n

in powers of (z— )}, and here the coefficient yr, is neither 0 nor a positive number, and
the coefficient i, is distinct from 0.
Proof. The identity

—=(=-§)+§) = 2(z—-§)+(=—-{)*

shows that |z2—§ | becomes smaller than any given positive number if |z— | is
sufficiently small. Hence the series

B —c = (fo=0)+ ¥ 2= O

converges in a neighbourhood of z = ¢, and can here be rearranged into a convergent
series

B —c = (gy—c)+ X Fi= L)

in powers of (z — §,)%. Since ¢ > 1 by hypothesis, the coefficient ¢, — ¢ neither vanishes
nor is a positive real number, and the coefficient ¢¥* = ¢,(2¢,)* does not vanish. It
follows also that the square root ¢, = (¢, — ¢)} is neither 0 nor positive real.

Now, by the definitions of ¥(z) and of i,,

v = (i T pre—ti| = e T gre-gm)

Hence, by the binomial theorem, 1(z) can in a certain neighbourhood of z = ¢, be
expanded into a convergent series

0

i 1 © k
v = v 2 (1) v £ otte— o] = £ gt
k=0 \f, n=1 n=0
in powers of (z — )t with certain coefficients ,. We know already that i, has the
required properties, and evidently ¥, = 11/32¢F does not vanish.

Remark. The assumption that ¢, is not positive, and hence that i, # 0, has the
consequence that ¢r(z) cannot have a branch point of higher order than 2 at z = ¢,
while the assumption that ¢, # 0 implies that both ¢(z) at z = {, and ¥ (z) at z = ,
do have branch points of order 2.

8.

The continuation of A(z) into #, is not only regular, but also single-valued be-
cause #, evidently is simply connected. It will now be proved that A(z) has infinitely
many branch points in the topological closure U of #,,.

These singular points lie already on the sets L(m, p), and we begin with a study
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of the special line segment L(1,r) which is identical with the interval [r, 1) on the
positive real axis.

That 2z = r is a singular point of A(z) follows from the following two facts. (i) The
function A(z) necessarily has at least one singular point on the circle of convergence
|z| = r of the Laurent series (3). (ii) Since all the coefficients a,, in (3) have the same
(positive) sign, the point z = » which belongs to L(1,7) must be singular. On the
other hand, A(z) is regular at, and hence in a neighbourhood of, the point z = 72
which by 72 < r lies in %,

By the same considerations as in the proof of theorem 3, z = r is a quadratic
branch point of A(z), and

h(r)y =0, h(r?) =c.

We note also that, by § 3, k(z) is positive, real and strictly decreasing on the interval
(0,7] on the real axis, decreasing from large positive values near z = 0 to 0 at
z=r.

The behaviour of A(z) near the branch point z = r can be studied by means of a
series in powers of (z—r)}. The function k(z2) is regular in a neighbourhood of z = r
and here can be written as a convergent Taylor series

h(z%) = cz:]O c(z—1)",

where the coefficients ¢, are defined by
co=—c and nle, = (d/dz)"h(z?)|,., (n=1,2,3,...).
All these coefficients are real numbers. In particular,
¢, = dh(z?)/dz|,_, = 2rk'(r?),

z=r
so that by § 3 the factor A'(r?) and hence also the coefficient ¢, are negative. Let y,
be the positive square root of — ¢, and fix the square root ci“ by
cl% = —1y,.
The reason for the choice of the minus sign will soon become clear.
In a neighbourhood of z = 7, just as in the proof of lemma 1,

°° 3
z) = {h(z2) —c}t = ~—iy0(z——r)%{1 + 3 c;lcn(z~r)"—1}

n=2

—inte=rt 3 () ( £ errene-nm),

and therefore

W) = —iGz— ) 3 (e —r)m, (15)

n=0

where the coefficients y, are real numbers, and 7y, has already been defined and
does not vanish.
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This representation shows that k(z) has a quadratic branch point at z = r and
therefore is at least two-valued. Hence the Riemann surface of h(z), #Z say, has at
least two sheets. One of these sheets is %,; call the other sheet Z,. These two sheets
hang together at the branch point z = r and intersect each other, say along a sub-
interval of L(1,7).

From now on denote by h(z) the analytic continuation of the function defined by
the series (3) onto #, and by hy(z) and k,(z) the branches of A(z) on the sheets R,
and Z,, respectively. A similar notation with suffixes will be used for other branches
of h(z).

The square root (z—7)} in (15) has not yet been fixed. Let us assume that
—i(z—7)¥ = (r—2)} is taken positive real on the line segment (0, 7) on the positive
real axis of Z,; from there continue the square root analytically into the sheets
R, and A, of #. With this choice of the sign of the square root, the development
(15) represents the branch Ay(z) of h(z), while the other sign gives the branch A, (z).
Hence

hy(z) = — hy(2). (16)

Furthermore, since A(z) is an odd function of z, also the point z = —r is a quadratic
branch point of A(z) on Z,. It follows from (15) that A(z) has in a neighbourhood of
this point the development

h(z) = — (z+1)} % (= D) yulz+1)" (17)
with the same coefficients y,, as in (15). Choose here the square root — (2 + 7)} such
that it is negative real on the interval (—r, 1) of the negative real axis of A&,, and
continue it from here analytically onto the Riemann surface Z. It is evident that
the branch of k(z) so defined coincides with hy(z) on #,. The other branch is equal
to — ho(z) and hence, by (16), is the branch %,(z) on %,. The two sheets Z, and %,
are thus connected at both quadratic branch points z = r and 2 = —7.

9.
A series

P(z) = nZO Gulz— )
in powers of (z— {)? is said to be admissible at z = {if it has the following properties.
(a) The series converges in a neighbourhood of z = {;
(b) 0<¢ <1
(c) the coefficient @, is not a positive real number, and the coefficient ¢, does not
vanish.
Denote by ¢, = ¢} either of the two square roots of { so that again

0 < |&| < 1.
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Lemma 1 then states that the new series

VE) = (BE) -t = T ya— b

in powers of (2 —{,)? is admissible at z = {,. We may thus replace ¢(z) by ¥(z) and
repeat the construction.

This procedure will now be applied to the branch hy(z) of A(z). The series (15)
for hy(2) evidently is admissible at z = r; furthermore, by (H),

ho(z) = {ho(2%) — C}%

if the correct sign of the square root is taken. A repeated application of lemma 1
shows thus that A (z) is admissible at all points of the sequence

21,7y = {r, r¥ et od, .}

which are therefore quadratic branch points of hy(z). Since hy(z) is an odd function of
z, we may immediately add that Ay(z) is also admissible at all points of the sequence

Z(1, —r) = {—r, —rk, —rt, b}

so that also these points are quadratic branch points of hy(z). In fact, much more can
be proved. Define the pairs (m, p) as in §6, and put

P =elp|,

so that € is a 2mth root of unity. Associate with (m, p) the sequence of points

Z(m, p) = {elp|.¢lp|t,elp|t elp]t, ...}
which lie on the line segment L(m, p) and tend to the limit ¢ on the unit circle.

THEOREM 4. Let ¢ > %, and let (m,p) run over all the pairs defined in §6. Then
ho(2) s admissible at all points of the corresponding sequence X (m,p) and hence all
these points are quadratic branch points of hy(z).

Proof. The assertion has already been proved for the two special sequences
2(1,r) and 2(1, —r) that belong to m = 1. Now let m > 2 and assume that the
theorem is already known to be true for the values 1,2, ...,m — 1 and all the corre-
sponding roots p. If now (m,p) is an allowed pair, let ¢|p|>™" be any element of
2(m,p); here n is some non-negative integer. Then also (m—1,p?) is an allowed
pair, and (e|p|2™")? evidently belongs to X(m — 1, p?). Therefore, by the induction
hypothesis, ky(z) is admissible at the point (¢[p|?™™)?, and it follows from lemma 1
that it is also admissible at z = €|p|?>™". This proves the assertion.

CoroLLARY. The quadratic branch points of hy(z) tend to every point on the unit
circle |z| = 1. This circle consists thus entirely of singular points of hy(z) and hence is
a natural boundary of both hy(z) and h,(2).
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10.

Theorem 3 established that A(z) has no singular points in the set 2. The frontier
of Z#, consists of the origin z = 0, the unit circle, and of all the infinitely many line
segments L(m,p). Here the origin is a pole of ky(z), the unit circle is a natural
boundary, and, by theorem 4, the sequence X(m, p) on each line segment L(m, p)
consists of quadratic branch point of %y(z). On the other hand, the following result
holds.

THEOREM 5. Let ¢ > }. There does not exist any singular point of hy(z) on a line
segment L(m, p) that is not contained in X'(m, p).

Proof. Let the assertion be false, and let 2z, be a singular point of A4(z) on L(m, p)
that does not belong to X(m, p). Then z, has the form

2 = elplz-ty

where, asin §9, ¢ = p/|p|, and ¢ is a certain positive number that is not an integer.
Here the number p was defined by

p=zxr
if m = 1, and was for m > 2 one of the 2™~ roots of the equation

-1
=y,

p

Hence in either case,

[p|" 7 =r and |p|*" =%

Consider now the sequence of successive squares
8
{20,28, 28,28, ...}

This sequence has the limit 0; hence its elements finally lie in %, and then, by
theorem 3, are regular points of hy(2). It follows that there is a smallest non-negative
integer n such that 22" is a singular point and zg""* is a regular point of A(z). By

the same considerations as in the proof of theorem 3 this implies that
ho(z2") =0 and hy(2""") = c.

Therefore, by the corollary to theorem 3, the singular point 23", = z, say, lieson the
real axis and its square 22" = 22 lies on the positive real axis. Further

ho(21) = 0 and hy(28) =c. (18)

Since hy(z) is an odd function, also —z, is a singular point of ky(z). There is then
no loss of generality in assuming that z, itself is positive; for otherwise replace z;
by —z,. This does not affect the equations (18).

Next

21 — izgn — iegnlplzfn—t — rzn-m—H—l
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since +62" = + 1 by our choice of the sign of z,.
Put
T =—(n—m—t+1), sothat z =r2".
Since ¢ is not an integer, the same is true for 7'. Moreover, 7' is positive because by
theorem 3 the singular point z, cannot be less than 7.
Denote by N = [T'] the integral part of 7" so that

N>0 and N <T <N+1.

Hence
2N o 2, < ,.2—<N+1),

and therefore
r2 < 2Nl <y, (19)

We combine finally the second equation (18) with the functional equation (H)
written in the form
ho(2%) = ho(2)*+c.
It follows that
¢ = ho(2]) < ho(2) < ..o < P3N,

However, as z runs from r2 to » along the positive real axis, hy(z) decreases steadily
from the value ¢ at z = 72 to the value 0 at z = r, and so, by (19), the function value
ho(22V+1) cannot be greater or equal to ¢. This contradiction proves the assertion.

11.

More information about the multiple-valued function A(z) is contained in the
following result.

THEOREM 6. Letc > }. The function h(z) is infinitely-many-valued, and its Riemann
surface R has infinitely many sheets.

Proof. We shallstudy %(z) on small closed curves with centres at the branch points
in X(1,r) and find that the number of branches at the successive points of this se-
quence tends to infinity.

Denote by ¢ a very small positive constant. The branch A(z) of A(z) is regular at
the point z = 72 and at all points of the circle

Cilz—r¥ =t
of centre 72 and radius ¢. Here the points on C' may be written in the form
z=124+te’% where 0<6<2n.
As 6 runs from 0 to 2x, C is described in the positive direction.
When z lies on C and » is any non-negative integer,

27" = (P2 tef)27" T = 2 (1 4 2efh)2
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Denote here by 727" the positive real value of the root, and define the factor
(1 +r2efh2 "

by means of the binomial expansion as

Ioe) —n-1
S ( i )(r‘zte‘”)"' = 14212t 1 O(t?).
k=0
It follows that when z runs over the circle C, 227" desecribes a closed curve,
C(n+ 1) say, with points given by
Cn+1): z= "4 222760l 4 O(12).

Again, as 0 runs from 0 to 2n, C(n+ 1) is described in the positive direction. The
curve C(n+ 1) is approximately a circle of centre »>~" and radius 2-7—1y=2+2""¢,
It is also clear that when 22 runs over C or over C(n + 1), z runs over C(1) or over
C(n + 2), respectively.

By the Laurent series (3), hy(z) has at the points z of C' the form

ho(z) = ¢ +yte’i 4+ O(t?), (20)
Y = ho(r?)

is a negative real number. This estimate is uniform in 6.

First let 22 = 72 +te’ run over O, and hence z = r + 2~ 1r~1te’ 4+ O(t?) over C(1).
By (20) and by the functional equation (H), two branches of 4(z) have on C(1) the
values

where

h(z) = + {ho(z) —c}t = + {yte” + O(t2)}} = + (yt)} {e” + O(t)}3,

which differ only by a factor — 1. On choosing the sign of (y#)} suitably, this leads
to the equations

ho(2) = — (Yt e+ O@t) and  hy(z) = + (yt)k el L O(t}), (21)

which agrees with the earlier formulae (15) and (17) when z lies on C(1). The
exponential factor e’ and the different signs show again that hy(z) and h,(z) are
connected at the quadratic branch point z = 7.
Next let 22 = r+ 2-1—1efi + O(t2) run over C(1), and hence z = rt 4 2-2—3tefi

+ O(t2) over C(2). On applying (H) to representations (21) of y(z) and h,(z) on C(1),
we obtain now four branches of A(z) on C(2), given by

+ {ho(e) =}t = £ {—c— (vl el + O(h)}H,
and

£ {h(2) = e}t = £ {—c+ (vl et + O},
respectively. This gives after a slight simplification,

+{(— )+ (yt/c)tedli+ O(t})}
and

+{(— )t —(yt/c)t et + O(t})},
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where the factor (yt/c)} may still have either sign. If this sign is chosen correctly,
then on C(2)
ho(z) = (=) + (yt/e)b e} 4 O(t) (22)
and therefore
hy(2) = —ho(2) = — (=)t = (yt/c) et + O(8}). (23)

In addition, there are two new branches, ,(z) and h,(2) say, of A(z):

hy(z) = (— ) — (yt/c)t ¥4+ O(t}), (24)
and
hy(z) = — (— )b+ (yt/c)b ¥4 O(t}). (25)
Hence

hy(z) = — hy(2).

Both pairs of branches hy(z), k() and hy(z), hy(z) of h(z) have separate quadratic
branch points at z = 7%, and thus the Riemann surface Z of h(z) has four sheets
Ry, R, Ry, B, which are connected in pairs (%, #,) and (#y, #3) at two separate
quadratic branch points z = r# which lie on top of each other.

Since, for example,

ho(2)? = hy(22)—c and  hy(z) = — hy(2?) —c,

it also follows that
ho(2)2 + hy(2)2+ 2¢ = 0, (26)

identically in z. Three further identities of the same kind arise if in this formula
ho(z)? is replaced by h(2)%, or hy(z)? by hy(2)?, or both.

This procedure can be repeated, with the result that at each step the number of
branches of A(z) and the number of sheets of # is doubled. At the next step let
22 = r} 4 2-2-$tefi 4+ O({2) run over C(2), hence z = rt + 2-3r—kte’ + O(12) over ((3).
We now obtain four quadratic branch points at z = r# which lie one above the other
and which correspond to the pairs of branches

i{kj(zz)“e}% (J: 0:1’2;3)'
This leads on C(3) to eight branches
hiz) (j=0,1,2,...,7)

of h(z), with the corresponding sheets Z,, #,, Z,, ..., %, of . The new branches
come again in pairs that differ only by a factor — 1 and are connected by the corre-
sponding branch point over z = 74. An old branch like Ay(z) and a new branch like
h,(z) are connected by an algebraic equation

Fo(2)% + Fog(2)* + 2¢{hg(2)? + hy(2)2} + (262 + 2¢) = 0.

Continuing thus, we obtain an infinite sequence of branches of A(z), where any
two of these are connected by an algebraic equation with constant coefficients.
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Tt would be of great interest to elucidate the complete structure of the Riemann
surface Z of h(z) and to find uniformizing functions. I conjecture that there exist
uniformizing functions F(Z), F,(Z) with the following properties.

(@) Both F\(Z) and Fy(Z) are regular and single-valued on the open disc

D:|Z] < 1.
(b) The equations
2= F(2), he) - F2)

establish a one-to-one correspondence between the points of the Riemann surface 2 and
the points of D.
(¢) Each of the functions F\(Z) and Fy(Z) satisfies a functional equation of the form

W](Fj(zzk)"pgp(z):z) =0 (.7 = 1)2)v

where ¥, and ¥, are polynomials with constant coefficients, and k is a certain positive
integer.

This section for the case when ¢ > 1} is concluded with the statement of a problem.
We saw that the functional equation (H) has for ¢ > I only multi-valued solutions
h(z) if one branch hy(z) is assumed to have a simple pole at z = 0.

Problem. Does (H) have a single valued reqular solution in 0 < |z| < 1 that is not
a constant and has an essential singularity at z = 0?

12.

From now on we deal with the analytic solutions A(z) of (H) given in a neighbour-
hood of z = 0 by the Laurent series (3), but assume that the parameter ¢ lies in the
interval 0 < ¢ < ;. We shall find that the radius of convergence » of the series (3)
isnow equal tor = 1, and hence that /(z) is regular and single-valued for 0 < |z] < 1.

For this purpose we try to develop %(z) into a power series in powers of the para-
meter ¢, of the form

hz) = 27— X ¢"h,(2), (27)
n=1
where the factors 4,(z) are regular functions of z inside the unit disc D:|z| < 1
that are independent of c.
Since A(z) is an odd function of z, it follows that

—z71— § Cnhn(—z) =—jzt— § Cnhn(Z) )

n=1 n=1

whence, on comparing the coefficients of ¢® on both sides of this identity,
h(—2)=—h,(2) (n=1,2,3,..).
It follows in particular that

h(0)=0 (n=1,23,..). (28)
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Next, the functional equation (H) is equivalent to the identity

222271 emh,(2)+ Y S R, (2) R, ()] — 272+ Y cPh,(2B) +c = 0.
n=1 m=1n=1 n=1
Here the coefficients of the different powers of ¢ must add to give zero. Therefore,
on putting

n—1
8,(2) = El hi(2) by 1(2) (0= 2,3,4,...), (29)
the following recursive system of functional equations is obtained:
hi(z) = 3z + 320, (27),
and
h,(2) = Yzs,(2) + 32h,(2%) (n=2,3,4,...).

These equations may be applied repeatedly, with z replaced successively by 22, 24,

28, ..., and lead to the following expansions:
2 222 2222t o
T D R
mE) =g+33 533 =7 B 2
and forn = 2,3,4, ...
z 2 22 22224 @
h’n(z) = §sn(z) + 55 sn(ZZ) +§—2' ESn(Z4) + ... = Zwl Z 2_k22k8n(22k).

k=1

It is obvious that for positive real z all the functions A, (z) and s,(z) are positive,
real and strictly increasing. Moreover, all the series are still convergent for z = 1.
For, trivially,

hl(l) =
k

9k — 1,
=1

from which it follows easily by induction on n that the values s, (1) exist and that

hy (1) =

2ks (1) = s,(1) (k=2,34,..).
1

I8

Further the numbers s, (1) satisfy the recursive formulae
n—1
s(1) =1, s,(1)= kglsk(l)sn_k(l) (n=234,...).

To evaluate the numbers s, (1), form the generating series

where ¢ is an indeterminate. From s,(1) = 1 and by the recursive formulae for s,(1),

n—

®. o © 1
Vi = 3 X su(l)s, ()™ = 3 tnlglsk(l)é’n_k(l)

m=1n=1 n=2

I

S s, (1) in = V(t)—t,
n=2
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so that V(t) satisfies the quadratic equation V(t)?— V(¢)+¢ = 0 and is equal to
V(t) = 3{1 + (1 —4t)}}.
Since V(0) = 0, the minus sign is the correct one, and by the binomial theorem,
V(t) = 31— (1—4t)} = {1— Y (i)(-‘i)”t”}-

n=0
Therefore

1) = 5,(1) = (=13 () ot = e

I1x3x5x...x(2n—3)

por (30)

Here for n = 1 the right-hand side must be replaced by 1
Tt is clear that all the series %, (z) converge absolutely and uniformly on the closed
unit disc D: |z| < 1 and here satisfy the inequalities

|ha(2)] < hy(1) (n=1,2,3,...). (31)

Hence the functions ,(z) are regular on D and continuous on the larger set D.

13.
The assertion at the beginning of § 12 can now be proved.
TureorEM 7. Let 0 < ¢ < L. Then h(z), as defined by the Laurent series (3), is

reqular and single-valued in the region 0 < |z| < 1 and is continuous on the unit
circle |z| = 1.

Proof. For 0 < ¢ < }and |z| < 1, by (30) and (31),

T b, )] < Z @) (D] = % T (=1 (i)
n=1 n=1 n=1
Here the series on the right-hand side is known to be convergent and in fact to
have the sum %. The development (27) for A(z) is therefore uniformly convergent
in the closed umt disc |z| < 1if the polar term 2~ is omitted. From this the assertion
follows immediately.
We still have to prove that the radius of convergence r of (3) is equal to unity
and not greater than unity. This assertion is contained in the following result.

TueOREM 8. Let 0 < ¢ < }. Then the unit circle |z| = 1 is a natural boundary of
h(z).

Proof. Since, by (3) and (27),

h(z) =z1- % anZZn—l =21 % Cnhn(z)’

n=1 n=1

identically in ¢ and z,

@, = 3 c"h,(2).

1 n=1

I8

n
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Ifin this identity the coefficients a,, are replaced by their expressions as polynomials
in ¢, and the functions 4,(z) by their power series in z, then the two sides of this
formulae become power series in ¢ and z with terms that are identical except for
their order; and all terms of the power series are positive when 0 < ¢ < } and
0 <z < 1. We know already that the series £2_;c", (1) converges; the same is
therefore true for the series £%_; a,,. By (H),

h(1)2—h(1)+c = 0;

hence A(1) = 3{1+ (1 —4c)}}. Here the square root must be taken with the plus
sign because, as ¢ tends to 0, the coefficients a, tend to 0 and hence k(1) tends to 1.
Since then A(1) is positive, in the range 0 < ¢ < §,

=)
0< ¥a, <l
n=1

Let now 6 be any real number. Then

@
h(e’) = e~ - 3 a, o@D
n=1
and here

@
< Y a, <l
n=1

@

Z a 6(2n—1)t9i
n

n=1

le=fi| = 1,

It follows that

@
|2(e™)] > 1—- % a, > 0,
n=1
and hence that A(z) does not vanish anywhere on the unit circle |z| = 1.
Next, on differentiating the functional equation (H),

hz) ' (z) —zh' (%) = 0. (32)

On putting z = 1, this gives {A(1)—1}2'(1) = 0. Hence A'(1) = 0 because A(1) < 1.
Since A(z) is odd, naturally also 2'(—1) = 0.

Let now n be a positive integer and ¢ any 27th root of unity, and hence €2 a 27-1gt
root of unity. We know already that A'(¢) = 0if ¢2 = 1. Let us assume that for some
n > 2 it has been shown that A'(y) = 0if #2"' = 1. If now " = 1, by (32),

h(e)h'(€) —eh'(€2) = 0.

Here h(e) # 0, while by the induction hypothesis 4'(€2) = 0. Therefore also A'(¢) = 0.
Thus A’(z) vanishes at all 2"th roots of unity where n = 1,2,3, ... .

These 27th roots of unity tend to every point e on the unit circle. Thus if A(z)
and so also A'(z) were regular in a neighbourhood of z = i, then 2’(z) would be
identically zero, and k(z) would be a constant. Since this is false, there are no
regular points on the unit circle, which proves the assertion.

One can show that not only &’(z), but all derivatives #'(z), A" (z), h(z), ... vanish at
all 27th roots of unity.
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14.

The previous results will now be applied to the solutions of a special nonlinear
difterence equation.

Denote by & an arbitrarily small constant in the interval 0 <& < =, and by
7Z = X+ Yi, where X and Y are real numbers, a new complex variable. This
variable will be restricted to the horizontal strip S in the Z-plane defined by

S: —(3in-8) < YIn2 < +(4n—9),
so that
sind < cos(YIn2) < 1.

Let the original variable z be connected with Z by the equation

2z = e—2Z — e—zx{cos(Yln 2)+isin (¥ In 2)}'

Hence
2| = p—2¥cos (¥ In2) ¢ g-2%sind,
It follows that when Z lies in S, |z| tends to 1 when X tends to —o0 and to 0 when X
tends to +oo. For all Z in 8 the point z satisfies 0 < |z| < 1.
Let now A(z) be again the solution of (H) considered in the previous sections.
We define an analytic function g(Z) for Ze 8 by the equation

9(2) = h(e™)—}.
A trivial calculation shows that g(Z) satisfies the difference equation
g(Z+1)—g(Z) = g(Z)?+C, where C =c—1}. (G)

Since ¢ was assumed positive, only results for C > — } are obtained, when we transfer

the properties proved for k(z) to the new function.
By the Laurent series (3) of h(z), we can assert that the difference equation (G)
has a unique analytic solution g(Z) such that for sufficiently large X

z 1 3 —en—12Z
g(Z) = @2 _§~n§lane (2n—1)2 ,
where the coefficients @, are the same as in §2. This function g(Z) is regular and
single-valued in § when —1 < C < 0, but it is infinitely many-valued if C' > 0,
and then has an infinite sequence of quadratic branch points in S.

15.
Consider again the function %(z). It is not difficult to compute this function, both
for real z in the interval 0 < z < r where r as before is the radius of convergence of

the Laurent series (3), and for complex z.
Let us begin with the case when z is real and lies in the interval 0 <z <. The
point z = r may be excluded because, as we have learned,

Mr)y=0 if ¢>1, and r=1, h(1)=31+(1—4c)}} if 0<ec<i
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Thus, in either case, 0 < z < 1. There exists then a smallest positive integer n

such that
max (¢, 2)22" < 10713, (33)

(The upper bound 10~ is chosen because the calculator works to this precision.)

Then
22" < ¢710718 < (1/2c)F and 22" < 2711078 < }.

Hence it follows from theorem 1 that
|h(z%") —27%"| < max (¢, 2)2?" < 10713,
Thus, with an error less than 10713,
h(z?") = 272"
Having found A(22"), we finally obtain k(z) by applying (H) = times in the form
h(z) = {h(z%) —c}},

with all the square roots taken with the positive sign.
For such computations I used a Texas Instruments TI-59 programmable
calculator with a PC-100A printer. The program is as follows,

LBL A RCL0022STO00R/S
LBL B RCL001/xSTO00R/S
LBL C (RCL00-RCLO1),zSTO00R/S.

One first stores the values of z and ¢ in the registers Ry, and R,,, respectively, then
presses key A n times until the displayed number 22" satisfies the inequality (33).
Next one presses key B once and key C n times. The displayed number is A(z).

By means of this program A(z) has been tabulated for certain values of the para-
meter ¢. Naturally if ¢ > 1, the program does not work for z > r because then A(z)
is not real.

For ¢ > 1 the same program allows one to evaluate the radius of convergence r.
This is best done by using the equation A(r?) = ¢. One may apply Newton’s method,
or simply trial and error. (See table 1.)

16.

To calculate (z) for z > r, or more generally for complex z, a different method
must be used. If, first, |z| is not too large compared with r, say |z| < 0.4 if ¢ = 2
and |z| < 0.5if ¢ = }, about 10 terms of the Laurent series (3) give (z) with sufficient
precision, once the Laurent coefficients a,, a,, ..., @y have been calculated, which can
easily be done from the recursive formulae in § 2, by using the calculator.

Since k(z) is an odd function and has real Laurent coefficients, it obviously suffices
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to consider variables z in the first quadrant of the z-plane. Write z in the trigono-
metrical form z = Re?t where R is positive, and for convenience ¢ is measured in
degrees, thus lying between 0° and 90°.

The program for the evaluation of &(z) is now as follows.

LBLA STO 10 PRT228TO 11 R/S STO 12PRT x 2 = STO 134, STO 51 a,
STO 521, STO 53 1, STO 54 a5 STO 554, STO 56 a, STO 57 2, STO 58

1, STO 59 51 STO 40D

LBLB (RCL 101 /2 x RCL 12C0S) 2 < (RCL 10 1 /z RCL 12SIN) + / — 2+
INVSBR

LBLC (RCL 10 x RCL 12 COS x RCL IND 40) + / — 2« £ (RCL 10 x RCL 12 SIN
« RCL IND 40)+ /— X+ 1SUM40 RCL 11 PROD 10 RCL 13SUM 12 INV SBR
LBLD BCCCCCCCCCRCLO4PRTRCLOI PRTCMSCLR 2+t CLRR/S

To apply this program, key in the value of R, press A, then key in the value of ¢
in degrees and press R/S. After about a minute the printer will print out the values
of the real and the imaginary parts of A(z).

For larger values of R the Laurent series cannot be used and we then apply the
functional equation (H), possibly several times. It is necessary to remember that
in the first quadrant the real part of 2(z) is positive and the imaginary part negative.

Provided that the Master Library is installed in the calculator, we can obtain
h(z) from h(z%) by the following program.

PRG 05 [key in the real part of A(z%)]—2 = A [key in the imaginary part of

h(z%)JAD
The calculator then prints the real part of A(z), and on pressing the key z<¢ it
prints the imaginary part of 4(z). It may be necessary to correct the signs of either
or both. If R is close to 1, this procedure may have to be repeated several times.

TABLE 1. RADII OF CONVERGENCE

2

C r re
100 0.0997515 0.0099504
10 0.3087500 0.0953266
5 0.4269910 0.1823213
2 0.6 345845 0.4026975
1 0.8157256 0.6654082
0.5 0.9639731 0.9292442
0.4 0.9890169 0.9782732
0.3 0.9998002 0.9996 004
0.25 1.0000 000 1.0000000
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