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be a formal power series in z with complex coefficients fi- If f (z) consists only of the
stant term f,, then f(z) is called a forbidden series; otherwise f(z) is said to be
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Let P(u, ) be an irreducible polynomial with complex coefficients and let
¢ = 2 be an integer. We establish the necessary and sufficient conditions
under which the functional equation

P(f(2).f(z1)) = 0, (F)

has a non-constant analytic solution that is either regular in a neighbour-
hood of the point z = 0 or has a pole at this point (theorem 1).
By a simple change of variable, the difference equation

PF(Z),F(Z+1)) =0, (D)

can be proved under the same restrictions to have a non-constant solution
of the form

which is regular in the strip
ReZ > X,, |ImZ| <n/2Ing,
if X, is sufficiently large (theorem 2).

1.

@) = jgofj ¥,

admissible. The set of all admissible series is denoted by X.

Throughout this paper, q denotes an integer at least 2. If the power series f(z) is
forbidden, so is f(2), and vice versa. Obviously all power series satisfying the

functional equation

are

To every admissible power series f (z) there exists a smallest suffix » > 1 such that

f(2Y) = f(2),
forbidden.

fr # 0. By putting

¢.’i zf;i+r/fr (.7 =0, 1’2,-“),
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so that ¢, = 1, f(z) assumes the normed form

f@) =f0+f,zf(1 + X ¢jzj), where f, # 0. 1)
j=1
If we wish to show that f(z) belongs to the suffix r > 1, then we write
f@)=f(z7).
2.

Next denote by Y the set of all irreducible polynomials

m m
Pu,v) = 3 ¥ Batyk,

R=0k=0
with complex coefficients P, of the exact degree m > 1 in u and the exact degree
n > 1in v. If also Q(u,v)e Y, and if there is a complex constant ¢ # 0 such that
Q(u,v) = cP(u,v), then P(u,v) and Q(u, v) are said to be associated.

Definition. Let f(z)e X and P(u,v)e Y. If the formal power series f(z) satisfies

the formal functional equation

P(f(z)’f(zq)) =0, (F)
then f(z) is called a g-series and said to belong to P(u,v), and conversely P(u,v) is
said to belong to f (z).

It will immediately be proved that there is essentially only one polynomial
P(u,v) belonging to the g¢-series f(z). The later results will, however, show that
more than one g-series may belong to a given polynomial P(u, v) e Y, although their
number is always finite.

LemMaA 1. If the g-series f(z) belongs to both P(u,v) and Q(w,v), then these two
polynomials are associated.

Proof. Let R(u) be the resultant of P(u,v) and Q(u,v) with respect to v. Then
R(u) = P(u,v) P*(u,v) + Q(u,v) @*(u,v),

with certain polynomials P*(u, v) and Q*(u,v). If R(u) is not identically zero, then
the functional equation (F) and its analogue for @ (u, v) show that

R(f(z) =0,

hence that f(z) is a constant and therefore forbidden, contrary to the hypothesis.
Therefore R(u) vanishes identically. But then the two polynomials P(u,v) and
@(u,v) have a non-zero common factor and so, by their irreducibility, are
associated.

LemMA 2. Let the polynomial P(u,v)e Y not be associated with the polynomial u —v.
Then P(u,u) ts not identically zero.



On certawn functional ana aifference equations 3

Proof. Put
Py(u,v) = (1/hY) (@/00)" P(u,v) (h=1,2,...,m),
so that
Fy(u,v) = P(u,v).
By Taylor’s formula,

P(u,v) = Plu,ut (0 =) = 3 By(u,) (0=’

It follows that if (u, u) vanishes identically, then P(u, v) is divisible by, and there-
fore associated with, the polynomial u —v.

Lemma 3. Let f(z) be a g-series which belongs to P(u,v). Then the constant term f,
of f(z) satisfies the equation

P(fo:fo) =0 (01)

Proof. This assertion follows at once from the functional equation (F) on sub-
stituting z = 0.

Thus if P(u,v) is not associated with « —w, then the constant term f, of any
g-series belonging to P(u,v)€ Y has at most finitely many possible values. On the
other hand, if P(u,v) = ¢(u —v), then it is easily seen that there does not exist any
g-series belonging to P(u,v).

3.

Denote by P(u,v) any polynomial in ¥ which is not associated with « —v, and by
f(z) any g¢-series belonging to P(u,v). We know already that this requires the
equation (C,), but this condition alone is not sufficient, and we shall establish three
further conditions which have to be satisfied.

For this purpose consider simultaneously with the functional equation (F) the

algebraic equation
P(u,v) = 0. (A)

Since P(u, v) isirreducible and has the exact degree m > 1in w, this equation defines
u as an m-valued algebraic function
u = U(v)

of v which is not a constant. The equation (C,) implies that there exists a branch
Uy(v) of U(v) with the property
Us(fo) = o>

where f, is again the constant term of f(z)
By the theory of algebraic functions it may be assumed that this branch U,(v) has
in a neighbourhood of » = f, the power series

= fo+ Epz —fo)e,
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with certain complex coefficients p, not all zero; here « is a positive integer which
does not exceed the degree m. Denote by b > 1 the smallest suffix such that

Py # 0.

Such a suffix exists because U(v) and hence also Uy(v) is not a constant. The series
for U,(v) has thus the explicit form

v) = fo+ lgpt(” —fo)l/e.

Remark. If w is any ath root of unity, than also the series

Uylvlo) = fo+ 3 podo—fo)

represents a branch of U(v). On writing
p, for po,

U, (v|w) takes again the form Uy(v). It therefore suffices to consider the latter branch
of U(v).
If the integer a is smaller than m, then there are further branches of U(v).

4.
Consider now any g¢-series

f2)=fzr),

of the form (I) that belongs to P(u,v)€ Y. By the functional equation (F) the pair
of formal power series

u =f(2), v ___f(zq)’

satisfies the algebraic equation (A) and hence may be assumed to lie on the branch
Uy(v) of U(v). It follows then from (F) that also

1@ = fot S ) ~fo (#)
a formal identity. Here, by (I),

16 = fot b (1+ 5 8,7,

f@) = fo+fiz (1 + ﬁl ¢,~z‘”') :
j=
so that (F,;) is equivalent to

© . © © \la
(145 8) = Baureane (14 5 00) )

Here, by the binomial theorem, the last factor may be identified with the series

(1o Z o) 102, (1) (£ )
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which consists of terms in integral powers of 22. Hence (F,) implies that

Since this is an identity, equal powers of z on its two sides have the same
coefficients. Moreover, necessarily the terms of lowest degree in z on the left and
the right sides are the same, thus

f7r=p, f}]/azbqﬂa.
This equation implies that
fr= pgﬂa“b)’ (Cy)

@ =>5bq, hence 2<qg<by=a<m. (Cs)

and

There is one further necessary condition which can be best formulated in terms
of the following notation.

Definition. Denote by R the smallest positive integer such that lgR/a is an integer
whenever ! > b and p, # 0.

It is obvious that such an integer R exists and is a divisor of a.

The fourth necessary condition takes now the simple form

r=dR, where disa positive integer. (Cy

Proof of (C,). If r is not of this form, then there exists a smallest suffix A > b such
that p, # 0 and that Agr/a is not an integer. Now the right side of the identity (Fj)

contains the non-vanishing term
A/, A
Pa fr/ 2 qr/a,

where the exponent of z is fractional, and there is no other term on this right side
involving the same power of z. Since the left side of (F3) contains only terms in
integral powers of z, a contradiction arises. The following result has thus been
proved.

LemMA 4. Let f(2) = f(z; r) be a g-series belonging to P(u,v)e Y. Then the four
conditions (Cy), (Cy), (03) and (C,) are satisfied.

CoroLrLARY. The branch Uy(v) has the explmt Jorm Uy(v) = fy+pp(v —fo)1e plus
terms in higher powers of v— f,, for by (C;), b/a = 1/q.

Lemma 4 has the following converse.
LeMMA 5. Let P(u,v)€ Y, and let fy, r, f,, and q satisfy the conditions (C,), (Cy), (Cs),
and (C,). Then there exists a unique q-series
1@ =160 =yt (1+ 5 87
] =

satisfying the formal functional equation (Fy).
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Proof. Divide both sides of (F3) by the factor

frzr = pbfi)/azbqr/a’

and replace the suffix ! on the right side by b+ 1. On putting

M = Doy fibw/afrhl = Pb+lfr(b+l)/apz71f7b/a = (Po11/ o). /e (1=0,1,2,...),

so that
my =1,

the identity (F,) takes the equivalent form

143 ¢ = 3 mzdaria [1 + 3 ((b”)/“) S S ¢jkz<f1+~~-+fk>q] (P
i=1 =0 P} k)= 5=
Here it is convenient to define m; also for fractional [ by putting it then equal to 0.
By means of (F,) the coefficients ¢; of f(z) can now be defined for the successive
suffixes j. For on comparing the coefficients of z7 on both sides of (F',), we obtain the

system of equations

b+1)/a .
TSP L P AT S A
Laeers Jx
where the summation extends over all sets of suffixes [, k, jy, ..., j; for which
l> 17 k>17 j1> 1""}jk> 17 lqr/a’+(j1+"'+jk)q=j7 (1)
hence also
t<l<ajfgr, 0<k<lj/al, k<jit-.+je<lj/ql (2)

From the equations (E), each coefficient ¢; can be expressed as a polynomial in
b1, Doy ..., Py and in fact in ¢y, Py, ..., Prj/_1- Hence these coefficients are uniquely
determined, as was to be proved.

COROLLARY. For every positive integer d there exists a unique q-series f(z; dR)
satisfying (Fy). Moreover,
f dR) = f (2 R). (3)
For it is clear that if f(z) is a solution of (F;), then f(z?) also is a solution. The
assertion (3) is thus a direct consequence of the uniqueness of the solution of given
suffix dR.

6.

The g-series f(z) given by lemma 5 is a formal power series. We shall now prove
the surprising result that this power series has in fact a region of convergence and
hence in this region defines an analytic function of z.

The proof uses the following almost trivial lemma on binomial coefficients.

LemMmA 6. Let > 0 be a real number and k > 1 an integer. Then

(@)

< er+l,
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Proof. From its definition as a binomial coefficient,

e [ e

If, firstly, 1 < k < x+1, then all factors on the right side are non-negative and
therefore
x r+1lo+1 x+1_(x+1)k @ (x4 1)k
0<(k) TRy Sy YR Ry
If, secondly, k > x+1, then the additional factors (x+1)/k—1 in (4) where
x+1 < b < kall lie in the interval between — 1 and 0, thus have an absolute value

at most 1, so that the assertion holds also now.

= T+l

7.

By the theory of algebraic functions, the power series

Uye) = o+ 3 pio—fo

for the branch Uy(v) of U(v) has a positive radius of convergence. By the definition
of the coefficients , in § 5, this imples that there exists a constant
I'>2
such that
|m| <I" for 1=1,2,3,.... (5)
Now put
¢ = max (|¢,|, bme™I't).

We introduce the following notation.

Definition. Let J be any integer at least 2. The sequence of coefficients {¢;} of f (z)
is said to have the property [J] if
|¢;] <¢? for j=1,2,...J-1
Tt is obvious that {¢;} has the property [2]. In addition, we shall prove the following
result.

LemmMa 7. If {¢,} has the property [, then it has also the property [J + 1].

CoroLLARY. The sequence {¢;} has the property [J] for every integer J > 2, and

therefore
|g;| < for j=1,2,3,.... (6)

8. PROOF OF LEMMA 7

We apply the equation (E) for ¢; in the special case when j = J and give rough
upper estimates for the terms on its right side and for the number of such terms.
Firstly, by (5), for all suffices I satisfying 1 <1 < aJ/gr

|m| < I'aier < [imJ
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because ¢ > 2,7 > 1, and 1 < @ < m. In particular,
IﬂaJ/qu < [ellar < IimJ

independent of whether the suffix a.J /¢r is an integer or not.
Secondly, by lemma 6,

(2

< elatdihia  glatalgtatiania £ el+3+3) < o2/

becausea = bq, ¢ = 2,J > 2,and 1 < I < al/qr.
Thirdly, by the assumption [J],

l¢j1 . ¢jk‘ < cj1+.--+fk < c[JIII] < C%J,
because by (2) the suffixes jj, ..., j satisfy the inequality
At tis< /g < i)
Finally, by the upper bounds (2) for the suffixes applied when j = J, the suffix /in

(E) has at most aJ /qgr < ymdJ possibilities, the suffix & at most [J/q] < }J, and the
set of k suffixes jy, ...,J; at most

(V/EE=1) < (W) Corm

By these estimates, it follows now from (E) that
|ps] < T dmd x 3J x e/ 1 x T4 x €27 x cb7 < mJ2 e/ +14mI .

Here
mJ2ed/HIImIcdT < o (7)

provided that
¢ > (mJ2)2 e8+@ DTS,
Now J > 2 and therefore
JU <5,
while by the definition of ¢,
¢ > bme'lt.

The inequality (7)is then satisfied, and it follows that |¢ ;| < ¢/, as was to be proved.
The following result has thus been established.

THEOREM 1. Let P(u,v) be an irreducible polynomial with complex coefficients of the
exact degrees m > 1 and n > 1 in w and v, respectively; assume that P(u,v) 18 not a
constant multiple of w—v. Let ¢ > 2 and r > 1 be integers and let

J@ = forh 1+ 3 81), where £, #0, )
i=1
be a formal power series with complex coefficients satisfying the formal functional

equation

P(f(2),f(z9) = 0. (F)
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Then there exist two integers a > 1 and b = 1 and a branch

fo+22’t —fo)le,  where p, # 0,

of the algebraic function w = U(v) defined by
P(U(v),v) =0

such that f () also satisfies the formal functional equation

f@) =fo+ E 2 f (&) = fo), (¥y)
if and only if the following four conditions hold.
P(fo.fo) = 0. (C,)
[y = w3 = pi/ ., (Ce)
2<qg<bg=a<m (Cy)

The suffix r in (I) has the property that lqgr /a is an integer
whenever I > band p; # 0. (C,)

W hen these four conditions (C) are satisfied, then there exists to r exactly one power series
1) satisfying beth (F) and (F,). Moreover, this power series converges in a neighbour-
hood of z = 0 and here defines an analytic function f(z)

CoROLLARY. 4 repeated application of (F) allows usto express f (z4") forn = 1,2,3, ...
as an algebraic function of f(z). Stnce
2 >0 if |z] <1 and n-> o0,
it follows that f (z) can be continued as an analytic function into the whole unit disc
D:|z| < 1.
Houwever, this function f (z) may have an infinite sequence of poles and algebraic branch
points and may be multi-valued.

Examples show that g-functions f(z), as given by theorem 1, may be entire or
meromorphic functions in the whole z-plane. But there also are examples in which
f (2) cannot be continued beyond the unit circle |z| = 1, but still is regular and single-
valued in D and continuous on |z| = 1; orin which f(z) is infinitely many valuedin D
with an infinite sequence of algebraic branch points in D tending to every point of
|z| = 1.

Theorem 1 can be extended to functions f(z) defined by Laurent series

fe&) =3 7,
j=1

where [ is any negative integer. For then f(z)~! is again a power series, and if f(z)
belongs to the polynomial P(u, v), then f(z)~! belongs to the polynomial

P*(u,v) = wonP(u=1,v71),
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and this new polynomial evidently is also irreducible and is not a constant multiple
of w —v. Theorem 1 can thus be applied to f ()~

9.

As an application let us consider the power series and the Laurent series which
satisfy a functional equation

f@) =FK+h[f@)+...+F,f(=)" (8)

where as before ¢ is an integer at least 2, m also is at least 2, and F, P, ..., P, are

B,
complex constants where
P, #0.

Firstly let f(z) be again a power series of the form (I). Then by (C,),
Jfo=F+P fot+...+ B, [T

This equation has m roots, not necessarily all distinct; denote by f, any one of these
roots. It is convenient to replace f(z) by the new series

06 = f@—fy =7 (14 5 4,7), where f,#0.
j=1
The functional equation (8) takes then the form

9@ = @19(2) +Q29()*+... +@,,9(z)", (9)
where
Qm = Pm # 0.

With the functional equation (9) we associate again the algebraic equation
Q(u,v) =0, where Q(u,v) =Q u+Qu*+...+Q,u™—v.
Let s, with 1 < s < m, be the suffix for which

H=0=...=Q,_;,=0, but @, +#0.
Then the algebraic function v = U(v) defined by
Q(U(?J),?J) =0,

has a branch of the form
Uy(v) = Q1 *v's + terms in higher powers of v.
This requires by the condition (C;) that
s=¢q>2, hence @,=0,
and in the former notationa = ¢ =s,b = 1.
Hence, if 7 is chosen so that also the condition (C,) is satisfied, say as a multiple

of s = ¢, then the functional equation (8) has a solution f (z) of the form (I) which is
regular in a neighbourhood of z = 0, provided only that s > 2. This requires that

fo=FP+Pfo+..+P, fe=0 and P +2FP+...4+mP, =0.
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Itis clear that if these two equations are not satisfied, then the only analytic solutions
of (8) regular in a neighbourhood of z = 0 are constants.

Let us next consider the case when the functional equation (8) is to be satisfied
by a Laurent series f(z) with I < 0. Then

is a power series such that
gt = B+ Pig) "+ ..+ Bg()™,
or on multiplying by g(z)" ¢(22),
9" = Byg(2)" 9(1) + Pog ()" g(29) + ... + B g(29). (10)
To this functional equation corresponds the polynomial
Qu,v) = umr—v(Pyum+ Pu™+...+P,),

and the algebraic function v = U(v) defined by Q(U(v),v) = 0. Since by hypothesis
P, does not vanish, U(v) has a branch of the form

Uy(v) = P! + terms in higher powers of ».
It follows then from the condition (C;) that necessarily
‘ a=m=q and b=1.

Hence the functional equation (8) has exactly then an analytic solution with a pole
atz = 0 when ¢ = m. The condition (C,) can be satisfied by taking for the suffix » any
multiple of m.

10.

The considerations that allowed us to establish theorem 1 do not only provide an
existence proof, but also give a method for the actual computation and tabulation
of the analytic solutions, say by means of a computer or a programmable calculator.

This requires, firstly, the evaluation of a set of coefficients

P> Po+1> -5 PorLo
and hence also of the derived coefficients
my=1,my,...,m, (11)

of the branch Uy(v) of the algebraic function U(v). This calculation can be carried
out say, by means of Newton’s classical polygon method.

Secondly, once the coefficients (11) have been found, the recursive formulae (E)
enable us to determine also the set of coefficients

| bi b,
of f(z). We so obtain a polynomial

Jot iz (14 drz+ @2+ ... + P 2F),
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which, by the convergence of the power series for f(z), approximates this function
very well if L is sufficiently large and |z| is sufficiently small.

Thirdly, the functional equation (F) permits then to compute f(z) for larger and
larger values of |z| as long as z lies in the unit disc D. However, since (F) defines f (z)
as a multi-valued algebraic function of f (22), at each step of the calculation the right
root must be chosen. When f (2) is single-valued in D, this can be done by continuity;
otherwise special considerations are required.

For the functional equation

f@P=f@E)+e =0,

where ¢ > 0 is a real parameter, such an investigation has been carried out in some
detail in my paper (Mahler 1981).

11.
A simple transformation of the variable connects the functional equation
P(f(2),f(z) = 0 (F)
of theorem 1 with the difference equation
PF(Z),F(Z+1)) =0, (D)

where P(u,v) is the same polynomial as before.
Forreal components z, y, X, Y, write the previous complex variablezasz = x +yi
while Z = X + Yiis a second complex variable. Here assume that
z=e7 (12)
where ¢ > 2 is again an integer, and

g% = eZ1ng,

Thus the relation between z and Z is given by

2 = e—eflcos (¥ Ing)+isin (¥ Ing)]

Denote by S the horizontal strip

8:|Y| <n/2Ing
in the Z-plane. In §,
cos(YIng) > 0,

80 that for the corresponding point z
lz! = g—a¥cos (Y In®) {1
Hence 8 is mapped by (12) into the set
Dy:0 < |2z| <1,
for the exponential function defining z cannot be zero.

Next denote by € > 0 an arbitrarily small constant, and now restrict Z to the

narrower strip
S Y] < (n—¢)/2Ing
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contained in S. For points Z in S, it is clear that uniformly in Z,

|z| >0 as X - 400,
and
|z| >1 as X - —oc0.

If Z lies one on of the two lines

Y =+n/2Ing
that bound §, then
2z = etie"

has absolute value 1, thus lies on the frontier of D.
By means of these properties, theorem 1 leads immediately to the following
consequence.

THEOREM 2. Let the notation be as in theorem 1, and let the four conditions (C,), (C,),
(Cy), (C,) be satisfied. Then
PF(Z),F(Z+1))=0 (D)
has a formal solution

F(Z) =f0+f,e—“12(1 +]§1 ¢je—iqz)

which is not a constant. Moreover, this series converges uniformly in all points of the
strip S, for which X is sufficiently large, hence is here regular and analytic. By means
of the functional equation (D), the function F(Z) can be continued into the whole strip
S as an analytic function, but may have here an infinite sequence of poles and algebraic
branch points tending to the frontier of S.

Just as in §8, on replacing F(Z)by F(Z)~1, we can obtain similar results for the
solutions

F(z2) = 3 fye 7,
j=I

where 1 is a negative integer. Such solutions tend thus rather rapidly to infinity as
for Z € 8, the real part of Z tends to +oo.
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