Section 18.2 Determinants
If we attempted to find the inverse of the general \(2\times 2 \) matrix
\begin{equation*}
A= \begin{pmatrix}
a \amp b \\
c \amp d
\end{pmatrix}
\end{equation*}
we would find that, if \(ad-bc\neq 0 \) the inverse is
\begin{equation*}
A^{-1}=\frac{1}{ad-bc} \begin{pmatrix}
d \amp -b \\
-c \amp a
\end{pmatrix},
\end{equation*}
and if \(ad-bc=0 \) then \(A \) does not have an inverse. Thus for a \(2\times 2\) matrix, \(A \text{,}\) calculating the quantity \(ad-bc \) can act as a test for the invertibility of \(A \text{.}\) This quantity is called the determinant of \(A \) and is denoted by
\begin{equation*}
\det(A) \;\text{or}\; \vert A\vert.
\end{equation*}
Example 18.2.1.
Find the determinant of
\begin{equation*}
A=\begin{pmatrix} 2 \amp -1 \\ 3 \amp 1 \end{pmatrix}.
\end{equation*}
Answer.
Solution.
\begin{equation*}
\begin{vmatrix}
2 \amp -1 \\
3 \amp 1
\end{vmatrix}=2\times 1 -(3\times (-1))=5.
\end{equation*}
Note that since the determinant is not zero this matrix is invertible.
We can also think about the determinant of a \(2\times 2\) matrix geometrically. We know (see Theorem 18.1.12) that a matrix has an inverse when its column vectors are linearly independent. Thus, the \(2\times 2\) matrix
\begin{equation*}
A= \begin{pmatrix}
a \amp b \\
c \amp d
\end{pmatrix}
\end{equation*}
will have an inverse when the vectors \((a,c)^{T} \) and \((b,d)^{T} \) are linearly independent. Now we also know (from Chapter 16) that two vectors in the plane are linearly independent if they define a parallelogram with non-zero area. Finally, from Math1110, we know that the area of the parallelogram defined by the vectors \(\bm{u} = (u_{1},u_{2})^{T} \) and \(\bm{v} = (v_{1},v_{2})^{T} \) is
\begin{equation*}
Area=\vert u_{1}v_{2} - u_{2}v_{1}\vert.
\end{equation*}
Thus matrix \(A \) will have an inverse when \(ad-bc\neq 0 \) , i.e. \(\det(A)\neq 0. \)Let's now apply the same geometric argument to the general \(3 \times 3\) matrix
\begin{equation*}
A=\begin{pmatrix}
u_{1} \amp v_{1} \amp w_{1} \\
u_{2} \amp v_{2} \amp w_{2} \\
u_{3} \amp v_{3} \amp w_{3}
\end{pmatrix}=(\bm{u}, \bm{v}, \bm{w}).
\end{equation*}
Three vectors in space are linearly independent if they define a parallelepiped with non-zero volume. Now, the volume of the parallelepiped formed by the vectors
\begin{equation*}
\bm{u} = (u_{1},u_{2},u_{3})^{T} ,\; \bm{v} = (v_{1},v_{2},v_{3})^{T}, \; \text{and} \; \bm{w} =(w_{1},w_{2},w_{3})^{T}
\end{equation*}
is
\begin{equation*}
Volume=\vert \bm{u} \cdot \bm{v} \times \bm{w} \vert,
\end{equation*}
i.e. the absolute values of the scalar triple product of the vectors, (again see Math1110). Thus the matrix \(A \) will have an inverse when \(\bm{u} \cdot \bm{v} \times \bm{w} \neq 0. \) Hence for a \(3\times 3 \) matrix its determinant is defined as
\begin{equation}
\det(A)=\vert \bm{u} \cdot \bm{v} \times \bm{w} \vert\label{Eq-det_with_three_vectors}\tag{18.2.1}
\end{equation}
Example 18.2.2.
Find the determinant of
\begin{equation*}
A= \begin{pmatrix}
2 \amp 4 \amp 6 \\
3 \amp 2 \amp 1 \\
1 \amp 1 \amp 2
\end{pmatrix}.
\end{equation*}
Answer.
Solution.Let
\(\bm{u}=(2,3,1)^{T},\; \bm{v}=(4,2,1)^{T},\; \bm{w}=(6,1,2)^{T}. \) Then
\begin{equation*}
\bm{v} \times \bm{w}=(4,3,1) ^{T} \times (6,1,2)^{T}=(3,-2,-8)^{T}
\end{equation*}
and hence
\begin{equation*}
\det(A) = (2,3,1) ^{T} \cdot (3,-2,-8)^{T}=(3,-2,-8)^{T}=-8.
\end{equation*}
While we can calculate the determinant of a \(3\times 3\) matrix using formula (18.2.1) other algorithms have been derived and have the advantage that they easily generalise to matrices of orders higher than \(3 \text{.}\)
Theorem 18.2.3.
For the \(2\times 2\) matrix \(\begin{pmatrix}
a \amp b \\
c \amp d
\end{pmatrix}\text{,}\) \(\det \begin{pmatrix} a \amp b \\ c \amp d \end{pmatrix}=ad-bc \text{.}\)
-
For the \(n\times n\) matrix \(A=\begin{pmatrix}
a_{ij}
\end{pmatrix}\) we define the minor, \(M_{ij} \) as the determinant of the \((n-1)\times (n-1) \) matrix obtained by deleting the \(i\)th row and the \(j\)th column of \(A \text{.}\) Then
\begin{equation*}
\det(A)=\sum_{j=1}^{n}(-1)^{i+j}a_{ij}M_{ij}\qquad \text{for any}\qquad i=1,2,3,\ldots,n
\end{equation*}
or
\begin{equation*}
\det(A)=\sum_{i=1}^{n}(-1)^{i+j}a_{ij}M_{ij}\qquad \text{for any}\qquad j=1,2,3, \ldots, n.
\end{equation*}
Example 18.2.4. (Example 18.2.2 revisited).
Find the determinant of
\begin{equation*}
A=\begin{pmatrix}
2 \amp 4 \amp 6 \\
3 \amp 2 \amp 1 \\
1 \amp 1 \amp 2
\end{pmatrix}.
\end{equation*}
Answer.
Solution.Using the first of the formulas given above with
\(i=1: \)
\begin{align*}
\det(A) = \amp (-1)^{1+1} 2 \begin{vmatrix}
2 \amp 1 \\
1 \amp 2
\end{vmatrix} + (-1)^{1+2} 4 \begin{vmatrix}
3 \amp 1 \\
1 \amp 2
\end{vmatrix}+ (-1)^{1+3} 6 \begin{vmatrix}
3 \amp 2 \\
1 \amp 1
\end{vmatrix}\\\\
=\amp 2(4-1)-4(6-1)+6(3-2)\\ \\
=\amp -8.
\end{align*}
Example 18.2.5.
Find the determinant of
\begin{equation*}
A=\begin{pmatrix}
2 \amp 4 \amp 6 \\
0 \amp 2 \amp 1 \\
0 \amp 0 \amp -4
\end{pmatrix}.
\end{equation*}
Answer.
Solution.Using the second of the formulas given above with
\(j=1: \)
\begin{align*}
\det(A) = \amp (-1)^{1+1} 2 \begin{vmatrix}
3 \amp 1 \\
0 \amp -4
\end{vmatrix} + (-1)^{2+1} 0 \begin{vmatrix}
2 \amp 6 \\
0 \amp -4
\end{vmatrix}+ (-1)^{3+1} 0 \begin{vmatrix}
4 \amp 6 \\
3 \amp 1
\end{vmatrix}\\\\
=\amp 2(-12-0)-0+0\\ \\
=\amp -24.
\end{align*}
Notice that for a matrix that is upper triangular the determinant is just the product of the entries on the main diagonal.
Calculating the determinant of a \(3 \times 3 \) matrix via minors is relatively easy. However for matrices of higher orders the calculation can become very tedious. For example, to calculate the determinant of a \(4\times 4 \) matrix potentially involves calculating the determinants of four \(3\times 3\) matrices. Thus for large matrices the preferred strategy for calculating its determinant is based on the observation that for an upper triangular matrix the determinant is just the product of the entries on the main diagonal.
Theorem 18.2.6.
To calculate the determinant of the \(n \times n \) matrix \(A \text{:}\)
-
If matrix \(B \) is obtained from matrix \(A \) by interchanging \(2 \) rows then
\begin{equation*}
\det(B)=-\det(A).
\end{equation*}
-
If matrix \(B \) is obtained from matrix \(A \) by multiplying a row of \(A \) by a scalar \(k \) then
\begin{equation*}
\det(B)=k\det(A).
\end{equation*}
-
If matrix \(B \) is obtained from matrix \(A \) by adding a multiple of one row of \(A \) to another then
\begin{equation*}
\det(B)=\det(A).
\end{equation*}
Example 18.2.7. (Example 18.2.2 revisited).
Find the determinant of
\begin{equation*}
A=\begin{pmatrix}
2 \amp 4 \amp 6 \\
3 \amp 2 \amp 1 \\
1 \amp 1 \amp 2
\end{pmatrix}.
\end{equation*}
Answer.
Solution.Using the row reduction method, first reduce
\(A \) to an equivalent upper triangular matrix.
\begin{align*}
\begin{pmatrix}
2 \amp 4 \amp 6 \\
3 \amp 2 \amp 1 \\
1 \amp 1 \amp 2
\end{pmatrix}
\amp \sim
\begin{pmatrix}
2 \amp 4 \amp 6 \\
0 \amp -4 \amp -8 \\
0 \amp -1 \amp -1
\end{pmatrix} \;\;\;
\begin{matrix}
\amp \\
R'_{2} \amp = R_{2}-3\frac{R_{1}}{2} \\
R'_{3} \amp = R_{3}-\frac{R_{1}}{2}
\end{matrix}\\
\amp \sim
\begin{pmatrix}
2 \amp 4 \amp 6 \\
0 \amp -4 \amp -8 \\
0 \amp 0 \amp 1
\end{pmatrix} \;\;\;
\begin{matrix}
\amp \\
\amp \\
R'_{3} \amp = R_{3}-\frac{R_{2}}{4}
\end{matrix}
\end{align*}
Since the only elementary row operation used here was that of adding a multiple of one row to another the determinant of the reduced matrix will be the same as the determinant of
\(A \text{.}\) Thus
\begin{equation*}
\det(A)=2\times (-4)\times 1 = -8.
\end{equation*}
For later reference, some properties of the determinant of a matrix are listed below.
Theorem 18.2.8. Properties of the Determinant.
Let \(A \) and \(B \) be square invertible matrices of order \(n \) and let \(k \) be a real number. Then
\(\displaystyle \det(A^{-1})=\frac{1}{\det(A)}\)
\(\displaystyle \det(A^{T})=\det(A)\)
\(\displaystyle \det(AB)=\det(A) \det(B)\)
\(\displaystyle \det(kA)=k^{n} \det(A)\)
Example 18.2.9.
Calculate the determinant of the following matrices. Which property of determinants does this illustrate?
\begin{equation*}
A=\begin{pmatrix}
-1 \amp 2 \\
3 \amp -4
\end{pmatrix},\;
B=\begin{pmatrix}
-2 \amp 4 \\
6 \amp -8
\end{pmatrix}
\end{equation*}
Solution.Firstly,
\begin{equation*}
\det(A)=(-1)\times (-4)-3\times 2=4-6=-2.
\end{equation*}
Next
\begin{equation*}
\det(B)=(-2)\times (-8)-4\times 6=16-24=-8.
\end{equation*}
Since
\(A \) and
\(B \) are square matrices of order
\(2 \) and
\(B=2A \) the fact that
\(\det(B)=4\det(A) \) illustrates Property
\(4.\) of
Theorem 18.2.8 above.
To close this section, note that we can now add one more statement to our theorem connecting the ideas that we have studied so far.
Theorem 18.2.10.
Consider the non-homogenous system of \(n \) linear equations in \(n \) variables
\begin{equation*}
A \bm{x} = \bm{b},\; \bm{b} \neq 0.
\end{equation*}
The following statements are equivalent:
The system has a unique solution,
\(A \bm{x} =0 \) has only the trivial solution \(\bm{x} =0, \)
The columns of \(A \) are linearly independent,
\(A \) is invertible.
\(\det(A)\neq 0 \text{.}\)
Exercises Example Tasks
1.
Find the determinant of
\begin{equation*}
M=\begin{pmatrix}
1 \amp 1 \amp 2 \\
1 \amp -1 \amp 1 \\
0 \amp 2 \amp 4
\end{pmatrix}
\end{equation*}
Using the minor formula.
Using row reduction to an upper triangular matrix.