Section 17.1 Addition and Scalar Multiplication
Definition 17.1.1. Matrix addition and scalar multiplication.
Let \(A\) and \(B\) be \(m \times n\) matrices, i.e., \(A=\left(a_{ij}\right)_{m \times n}\) and \(B = \left(b_{ij}\right)_{m \times n}\text{.}\) ThenMatrix addition is defined by \(A+B = \left(a_{ij} + b_{ij}\right)_{m \times n}\text{.}\)
Scalar multiplication is defined by \(kA = \left(k \cdot a_{ij}\right)_{m \times n}\) where \(k\) is a constant.
Thus, to add two matrices of the same size, add up the corresponding entries in each matrix. Matrix addition of matrices not of the same size is not defined. To multiply a matrix by a scalar, multiply each entry in the matrix by that scalar. Note that we now can also subtract two matrices by defining
Example 17.1.2.
If \(A = \begin{pmatrix} 1 \amp 2 \amp 3\\ 4 \amp 3 \amp 2\end{pmatrix}, \quad B = \begin{pmatrix} 5 \amp 3 \\ 9 \amp 2 \\ 4 \amp 3\end{pmatrix}.\) Then calculate the given expression or explain why it does not exist.
\(\displaystyle 3A+B\)
\((2A^T - B)_{32} \, \) (i.e. the entry in row \(3\text{,}\) column \(2\) of the matrix \(2A^T-B\,\))
\(\displaystyle (B^T+A)_{31}\)
Since \(A\) is a \(2 \times 3\) matrix so will be \(3A\text{.}\) Since \(3A\) and \(B\) are not the same size we cannot add these two matrices.
\(A^T = \begin{pmatrix} 1 \amp 4 \\ 2 \amp 3 \\ 3\amp 2\end{pmatrix}\) and so \(2A^T = \begin{pmatrix} 2 \amp 8 \\ 4 \amp 6 \\ 6 \amp 4\end{pmatrix}\text{.}\) Thus \(2A^T-B = \begin{pmatrix} -3 \amp 5 \\ -5 \amp 4 \\ 2 \amp 1\end{pmatrix}\) and \((2A^T - B)_{32} =1.\)
\(B^T + A = \begin{pmatrix} 5 \amp 9 \amp 4 \\ 3 \amp 2 \amp 3\end{pmatrix} + \begin{pmatrix} 1 \amp 2 \amp 3\\ 4 \amp 3 \amp 2\end{pmatrix} = \begin{pmatrix} 6 \amp 11 \amp 7\\ 7 \amp 5 \amp 5\end{pmatrix}\text{.}\) Since this is a \(2 \times 3\) matrix there is no entry in row \(3\text{,}\) column \(1\text{.}\)
From the definitions of matrix addition and scalar multiplication the following general properties can be shown.
Theorem 17.1.3. Properties of Scalar Multiplication and Matrix Addition.
Let \(A\text{,}\) \(B\) and \(C\) be matrices of the same size. Then
- (A1)
- \(A+B = B+A \hspace{32mm}\) (Commutative Law)
- (A2)
- \((A+B)+C = A+(B+C) \hspace{10mm}\)(Associative Law)
- (A3)
- \(A+0 = A \hspace{57mm}\) (Identity Law)
- (A4)
- \(A+(-A) = 0 \hspace{50mm}\) (Inverse Law)
- (S1)
- \(k(A+B) = kA+kB\)
- (S2)
- \((k_1 + k_2)A= k_1A + k_2A\)
- (S3)
- \(k_1(k_2A) = (k_1k_2)A\)
- (S4)
- \(1A = A\)
Exercises Example Tasks
1.
Let
Find \((2A-B^{T})_{12}\text{.}\)
Find \((2A-B)^T\text{.}\)
2.
Show that for any matrix \(A\,\text{,}\) \(3A = A + A + A\text{.}\) For what values of \(k\) is it true that \(kA = \underbrace{A + A + \cdots + A}_{k \mbox{ times}}\,\text{?}\)
3.
Prove that for two matrices \(A\) and \(B\) of the same size \(A+B = B+A\text{.}\)