Skip to main content

Section 8.2 Multivariable Chain Rules

Begin by considering the case where \(z=z(x,y)\) and \(x=x(t)\text{,}\) \(y=y(t)\text{.}\) In this case we can think of \(z\) as defining a real valued function \(z=z(t)\text{.}\)

If \(z=x^2+2xy+3y^2\) and \(x=t+1\text{,}\) \(y=t-1\) then find \(z'(t)\) by substituting the expressions for \(x\) and \(y\) into \(z\) and then differentiating.

Answer.

\(\dfrac{dz}{dt} = 12t-4\)

Solution.

On substituting \(x\) and \(y\) into \(z\)

\begin{alignat*}{1} z(t) \amp = (t+1)^2 + 2(t+1)(t-1)+3(t-1)^2\\ \quad \amp = 6t^2-4t+2 \end{alignat*}

Thus

\begin{equation*} \dfrac{dz}{dt} = 12t-4. \end{equation*}

Now for a function \(f\) of two variables the linear approximation (or ''small change'') formula says:

\begin{equation*} \Delta f \approx \dfrac{\partial f}{\partial x}\Delta x + \dfrac{\partial f}{\partial y}\Delta y. \end{equation*}

Thus

\begin{equation*} \dfrac{\Delta f}{\Delta t} \approx \dfrac{\partial f}{\partial x}\frac{\Delta x}{\Delta t} + \dfrac{\partial f}{\partial y}\frac{\Delta y}{\Delta t}. \end{equation*}

This formula becomes more accurate as \(\Delta t \to 0\) and from the limit we obtain the following chain rule.

If \(z=x^2+2xy+3y^2\) and \(x=t+1\text{,}\) \(y=t-1\) then find \(z'(t)\) by using the chain rule.

Answer.

\(\dfrac{dz}{dt} = 12t-4\)

Solution.

Here

\begin{equation*} \dfrac{\partial z}{\partial x} = 2x + 2y, \ \dfrac{\partial z}{\partial y} = 2x + 6y, \ \dfrac{dx}{dt} = 1 = \dfrac{dy}{dt}. \end{equation*}

So, via the chain rule

\begin{alignat*}{1} \dfrac{dz}{dt} \amp = (2x+2y)\times 1 + (2x+6y)\times 1\\ \quad \amp = 4x+8y\\ \quad \amp = 4(t+1)+8(t-1)\\ \quad \amp = 12t-4. \end{alignat*}

Use the chain rule to find \(z'(t)\) when \(z(x,y) = \sqrt{x^2+y^2}\) and \(x(t) = e^{2t}, \ y(t)=e^{-2t}\text{.}\)

Answer.

\(\dfrac{dz}{dt} = \dfrac{2(e^{6t} - e^{-2t})}{\sqrt{e^{8t}+1}}\)

Solution.

Here

\begin{equation*} \dfrac{\partial z}{\partial x} = \dfrac{x}{\sqrt{x^2+y^2}}, \ \dfrac{\partial z}{\partial y} = \dfrac{y}{\sqrt{x^2+y^2}}, \ \dfrac{dx}{dt} = 2e^{2t}, \ \dfrac{dy}{dt} = -2e^{-2t}. \end{equation*}

So, via the chain rule

\begin{alignat*}{1} \dfrac{dz}{dt} \amp = \dfrac{x}{\sqrt{x^2+y^2}}\times 2e^{2t} + \dfrac{y}{\sqrt{x^2+y^2}}\times (-2e^{-2t})\\ \quad \amp = \dfrac{e^{2t}2e^{2t}}{\sqrt{e^{4t} + e^{-4t}}} -\dfrac{e^{-2t}2e^{-2t}}{\sqrt{e^{4t} + e^{-4t}}}\\ \quad \amp = \dfrac{2(e^{6t} - e^{-2t})}{\sqrt{e^{8t}+1}}. \end{alignat*}

Consider the case now where \(z=z(u)\) and \(u=u(x,y)\text{.}\) In this case we can think of \(z\) as defining a function of two variables \(z=z(x,y)\) and hence has partial derivatives with respect to these variables. The relevant chain rules for this case are:

Use the appropriate chain rules to calculate \(\dfrac{\partial z}{\partial x}\) and \(\dfrac{\partial z}{\partial y}\) when

\begin{equation*} z = \dfrac{u}{u+1} \text{ and } u = 3x^5-5xy^2. \end{equation*}
Answer.

\(\dfrac{\partial z}{\partial x} = \dfrac{15x^4-5y^2}{(3x^5-5xy^2+1)^2}\)

\(\dfrac{\partial z}{\partial y} = \dfrac{-10xy}{(3x^5-5xy^2+1)^2}\)

Solution.

Using Chain Rule 2:

\begin{equation*} \dfrac{\partial z}{\partial x} = \dfrac{dz}{du}\dfrac{\partial u}{\partial x} \text{ and } \dfrac{\partial z}{\partial y} = \dfrac{dz}{du}\dfrac{\partial u}{\partial y}. \end{equation*}

Now, (via the quotient rule)

\begin{equation*} \dfrac{dz}{du} = \dfrac{(u+1)(1) - u(1)}{(u+1)^2} = \dfrac{1}{(u+1)^2} \end{equation*}

and

\begin{equation*} \dfrac{\partial u}{\partial x} = 15x^4-5y^2 \text{ and } \dfrac{\partial u}{\partial y} = -10xy. \end{equation*}

Thus

\begin{equation*} \dfrac{\partial z}{\partial x} = \dfrac{15x^4-5y^2}{(3x^5-5xy^2+1)^2} \text{ and } \dfrac{\partial z}{\partial y} = \dfrac{-10xy}{(3x^5-5xy^2+1)^2}. \end{equation*}

Next consider the case where \(z=z(x,y)\) and \(x=x(s,t)\text{,}\) \(y=y(s,t)\text{.}\) In this case we can think of \(z\) as defining a function of two variables \(z=z(s,t)\text{.}\) The relevant chain rules for this case are:

Use the appropriate chain rules to find \(\dfrac{\partial z}{\partial s}\) and \(\dfrac{\partial z}{\partial t}\) when

\begin{equation*} z = \dfrac{x}{y} \text{ and } x = se^t, \quad y = 1+se^{-t}. \end{equation*}
Answer.

\(\dfrac{\partial z}{\partial s} = \dfrac{e^t}{(1+se^{-t})^2}\)

\(\dfrac{\partial z}{\partial t} = \dfrac{se^t+2s^2}{(1+se^{-t})^2}\)

Solution.

Here

\begin{equation*} \dfrac{\partial z}{\partial x} = \dfrac{1}{y}, \quad \dfrac{\partial z}{\partial y} = -\dfrac{x}{y^2} \end{equation*}

and

\begin{equation*} \dfrac{\partial x}{\partial s} = e^t, \quad \dfrac{\partial x}{\partial t} = se^t, \quad \dfrac{\partial y}{\partial s}=e^{-t}, \quad \dfrac{\partial y}{\partial t}=-se^{-t}. \end{equation*}

Thus, by Chain Rule 3

\begin{alignat*}{1} \dfrac{\partial z}{\partial s} \amp = \dfrac{\partial z}{\partial x} \cdot \dfrac{\partial x}{\partial s} + \dfrac{\partial z}{\partial y} \cdot \dfrac{\partial y}{\partial s}\\ \amp = \left(\dfrac{1}{1+se^{-t}}\right)(e^t) + \left(\dfrac{-se^t}{(1+se^{-t})^2}\right)(e^{-t})\\ \amp = \dfrac{e^t}{(1+se^{-t})^2} \end{alignat*}

and

\begin{alignat*}{1} \dfrac{\partial z}{\partial t} \amp = \dfrac{\partial z}{\partial x} \cdot \dfrac{\partial x}{\partial t} + \dfrac{\partial z}{\partial y} \cdot \dfrac{\partial y}{\partial t}\\ \amp = \left(\dfrac{1}{1+se^{-t}}\right)(se^t) + \left(\dfrac{-se^t}{(1+se^{-t})^2}\right)(-se^{-t})\\ \amp = \dfrac{se^t + 2s^2}{(1+se^{-t})^2} \end{alignat*}

The chain rules given above are just special cases of the general chain rule.

Find \(\dfrac{\partial w}{\partial u}\) if \(w(x,y,z) = 2x^2+5y^2+z^3\) and

\begin{equation*} x(r,s,t,u) = r+s+t+u, \quad y(r,s,t,u)=r^2,\quad z(r,s,t,u) = \sqrt{r-s+t-u} \end{equation*}
Answer.

\(\dfrac{\partial w}{\partial u} = 4(r+s+t+u) - \dfrac{3\sqrt{r-s+t-u}}{2}\)

Solution.

By the general Chain Rule

\begin{alignat*}{1} \dfrac{\partial w}{\partial u} \amp = \dfrac{\partial w}{\partial x}\dfrac{\partial x}{\partial u} + \dfrac{\partial w}{\partial y}\dfrac{\partial y}{\partial u} + \dfrac{\partial w}{\partial z}\dfrac{\partial z}{\partial u}\\ \amp = (4x)(1) + (10y)(0) + (3z^2)\left(\dfrac{1}{2}(r-s+t-u)^{-\frac{1}{2}}(-1)\right)\\ \amp = 4(r+s+t+u) - \dfrac{3\sqrt{r-s+t-u}}{2} \end{alignat*}

Exercises Example Tasks

1.

Use the appropriate chain rules to find \(\dfrac{\partial z}{\partial x}\) and \(\dfrac{\partial z}{\partial y}\) when
\begin{equation*} z(u,v)=u^2v+e^v \quad \text{and} \quad u(x,y) = \ln(y-x), \quad v(x,y) = x+xy. \end{equation*}

2.

Two straight roads intersect at right angles. Car A is moving on one road approaches the intersection at \(25\) km/h while Car B moving on the other road approaches the intersection at \(30\) km/h. At what rate is the distance between the cars changing when A is \(0.3\) km from the intersection and B is \(0.4\) km from the intersection?

3.

Show that any function of the form
\begin{equation*} z = f(x+at) + g(x-at) \end{equation*}
is a solution of the wave equation
\begin{equation*} \dfrac{\partial^2 z}{\partial t^2} = a^2\dfrac{\partial^2 z}{\partial x^2}. \end{equation*}

4.

  1. If \(z=z(x,y)\) and \(x=x(\theta)\) and \(y=y(\theta)\) find an appropriate chain rule for \(\dfrac{d^2z}{d\theta^2}\text{.}\)

  2. Using the result of part (a) find \(\dfrac{d^2z}{d\theta^2}\) when \(z(x,y)=x^2+2y\) and \(x(\theta) = 5\cos(\theta)\) and \(y(\theta) = 5\sin(\theta)\text{.}\)